Find each of the following limits if it exists. If you think the limit does not exist provide a reason.
(a) lim x → 0 sin ( 5 x ) 1 − 1 − x {\displaystyle \lim _{x\rightarrow 0}{\frac {\sin(5x)}{1-{\sqrt {1-x}}}}}
(b) lim x → 8 f ( x ) , {\displaystyle \lim _{x\rightarrow 8}f(x),} given that lim x → 8 x f ( x ) 3 = − 2 {\displaystyle \lim _{x\rightarrow 8}{\frac {xf(x)}{3}}=-2}
(c) lim x → − ∞ 9 x 6 − x 3 x 3 + 4 x {\displaystyle \lim _{x\rightarrow -\infty }{\frac {\sqrt {9x^{6}-x}}{3x^{3}+4x}}}
Solution:
(a)
(b)
(c)
Return to Sample Exam