009C Sample Final 3, Problem 2
Revision as of 13:58, 5 March 2017 by Kayla Murray (talk | contribs)
Consider the series
(a) Test if the series converges absolutely. Give reasons for your answer.
(b) Test if the series converges conditionally. Give reasons for your answer.
Foundations: |
---|
1. A series is absolutely convergent if |
the series converges. |
2. A series is conditionally convergent if |
the series diverges and the series converges. |
Solution:
(a)
Step 1: |
---|
First, we take the absolute value of the terms in the original series. |
Let |
Therefore, |
Step 2: |
---|
This series is a -series with |
Therefore, it diverges. |
Hence, the series |
is not absolutely convergent. |
(b)
Step 1: |
---|
For |
we notice that this series is alternating. |
Let |
The sequence is decreasing since |
for all |
Also, |
Therefore, the series converges |
by the Alternating Series Test. |
Step 2: |
---|
Since the series is not absolutely convergent but convergent, |
this series is conditionally convergent. |
Final Answer: |
---|
(a) not absolutely convergent |
(b) conditionally convergent |