A curve is given in polar coordinates by
(a) Sketch the curve.
(b) Compute y ′ = d y d x . {\displaystyle y'={\frac {dy}{dx}}.}
(c) Compute y ″ = d 2 y d x 2 . {\displaystyle y''={\frac {d^{2}y}{dx^{2}}}.}
Since x = r cos ( θ ) , y = r sin ( θ ) , {\displaystyle x=r\cos(\theta ),~y=r\sin(\theta ),} we have
y ′ = d y d x = d r d θ sin θ + r cos θ d r d θ cos θ − r sin θ . {\displaystyle y'={\frac {dy}{dx}}={\frac {{\frac {dr}{d\theta }}\sin \theta +r\cos \theta }{{\frac {dr}{d\theta }}\cos \theta -r\sin \theta }}.}
Solution:
(b)
d r d θ = 2 cos ( 2 θ ) . {\displaystyle {\frac {dr}{d\theta }}=2\cos(2\theta ).}
y ′ = d y d x = d r d θ sin θ + r cos θ d r d θ cos θ − r sin θ , {\displaystyle y'={\frac {dy}{dx}}={\frac {{\frac {dr}{d\theta }}\sin \theta +r\cos \theta }{{\frac {dr}{d\theta }}\cos \theta -r\sin \theta }},}
y ′ = 2 cos ( 2 θ ) sin θ + sin ( 2 θ ) cos θ 2 cos ( 2 θ ) cos θ − sin ( 2 θ ) sin θ . {\displaystyle y'={\frac {2\cos(2\theta )\sin \theta +\sin(2\theta )\cos \theta }{2\cos(2\theta )\cos \theta -\sin(2\theta )\sin \theta }}.}
(c)
Return to Sample Exam