009B Sample Final 2, Problem 6

From Grad Wiki
Revision as of 13:16, 4 March 2017 by Kayla Murray (talk | contribs)
Jump to navigation Jump to search

Evaluate the following integrals:

(a)  

(b)  

(c)  

Foundations:  
1. For  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int {\frac {dx}{x^{2}{\sqrt {x^{2}-16}}}},}   what would be the correct trig substitution?
       The correct substitution is  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x=4\sec ^{2}\theta .}
2. We have the Pythagorean identity
       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \cos ^{2}(x)=1-\sin ^{2}(x).}
3. Through partial fraction decomposition, we can write the fraction
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}}
       for some constants Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A,B.}


Solution:

(a)

Step 1:  
We start by using trig substitution.
Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=4\sec \theta.}
Then,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dx=4\sec \theta \tan \theta ~d\theta.}
So, the integral becomes
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int \frac{1}{x^2\sqrt{x^2-16}}~dx} & = & \displaystyle{\int \frac{4\sec \theta \tan \theta}{16\sec^2\theta \sqrt{16\sec^2 \theta -16}}~d\theta}\\ &&\\ & = & \displaystyle{\int \frac{4\sec \theta \tan \theta}{16\sec^2\theta (4\tan \theta)} ~d\theta}\\ &&\\ & = & \displaystyle{\int \frac{1}{16\sec \theta} ~d\theta.} \end{array}}
Step 2:  
Now, we integrate to get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int \frac{1}{x^2\sqrt{x^2-16}}~dx} & = & \displaystyle{\frac{1}{16}\cos\theta~d\theta}\\ &&\\ & = & \displaystyle{\frac{1}{16}\sin \theta +C}\\ &&\\ & = & \displaystyle{\frac{1}{16}\bigg(\frac{\sqrt{x^2-16}}{x}\bigg)+C.} \end{array}}

(b)

Step 1:  
First, we write
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_{-\pi}^\pi \sin^3x\cos^3x~dx} & = & \displaystyle{\int_{-\pi}^{\pi} \sin^3x \cos^2x \cos x~dx}\\ &&\\ & = & \displaystyle{\int_{-\pi}^{\pi} \sin^3x (1-\sin^2x)\cos x~dx.} \end{array}}
Step 2:  
Now, we use  -substitution.
Let    Then,  
Since this is a definite integral, we need to change the bounds of integration.
Then, we have
   and  
So, we have
       

(c)

Step 1:  
First, we write
       
Now, we use partial fraction decomposition. Wet set
       
If we multiply both sides of this equation by    we get
       
If we let    we get  
If we let    we get  
So, we have
       
Step 2:  
Now, we have

       

Now, we use  -substitution for both of these integrals.
Let    Then,  
Let    Then,  
Since these are definite integrals, we need to change the bounds of integration.
We have    and  
Also,    and  
Therefore, we get
       


Final Answer:  
   (a)   
   (b)   
   (c)   

Return to Sample Exam