009C Sample Final 1, Problem 5

From Grad Wiki
Revision as of 17:02, 25 February 2017 by Kayla Murray (talk | contribs)
Jump to navigation Jump to search

Let

(a) Find the radius of convergence of the power series.

(b) Determine the interval of convergence of the power series.

(c) Obtain an explicit formula for the function .

Foundations:  
1. Ratio Test
       Let be a series and Then,

       If the series is absolutely convergent.

       If the series is divergent.

       If the test is inconclusive.

2. After you find the radius of convergence, you need to check the endpoints of your interval

       for convergence since the Ratio Test is inconclusive when


Solution:

(a)

Step 1:  
To find the radius of convergence, we use the ratio test. We have
Step 2:  
Thus, we have and the radius of convergence of this series is

(b)

Step 1:  
From part (a), we know the series converges inside the interval
Now, we need to check the endpoints of the interval for convergence.
Step 2:  
For the series becomes which diverges by the Divergence Test.
Step 3:  
For the series becomes which diverges by the Divergence Test.
Thus, the interval of convergence is

(c)

Step 1:  
Recall that we have the geometric series formula for
Now, we take the derivative of both sides of the last equation to get
Step 2:  
Now, we multiply the last equation in Step 1 by
So, we have
Thus,


Final Answer:  
   (a)    
   (b)    
   (c)    

Return to Sample Exam