009A Sample Midterm 1, Problem 2

From Grad Wiki
Revision as of 09:58, 16 February 2017 by Kayla Murray (talk | contribs)
Jump to navigation Jump to search

Consider the following function

a) Find
b) Find
c) Find
d) Is continuous at Briefly explain.


Foundations:  
1. Left hand/right hand limits
2. Definition of limit in terms of right and left
3. Definition of continuous

Solution:

(a)

Step 1:  
Notice that we are calculating a left hand limit.
Thus, we are looking at values of that are smaller than
Using the definition of , we have
       
Step 2:  
Now, we have

       

(b)

Step 1:  
Notice that we are calculating a right hand limit.
Thus, we are looking at values of that are bigger than
Using the definition of , we have
       
Step 2:  
Now, we have

       

(c)

Step 1:  
From (a) and (b), we have
       
and
       
Step 2:  
Since
       
we have
       

(d)

Step 1:  
From (c), we have
       
Also,
       
Step 2:  
Since
       
is continuous at
Final Answer:  
    (a)    
    (b)    
    (c)    
    (d)     is continuous at since

Return to Sample Exam