009C Sample Midterm 2, Problem 3

From Grad Wiki
Revision as of 11:05, 13 February 2017 by Kayla Murray (talk | contribs)
Jump to navigation Jump to search

Determine convergence or divergence:

a)
b)


Foundations:  
Alternating Series Test
Ratio Test

Solution:

(a)

Step 1:  
First, we have
       
Step 2:  
We notice that the series is alternating.
Let
The sequence is decreasing since
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}}
for all Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\ge 1.}
Also,
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n\rightarrow \infty}b_n=\lim_{n\rightarrow \infty}\frac{1}{\sqrt{n}}=0.}
Therefore, the series Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^\infty \frac{(-1)^n}{\sqrt{n}}} converges by the Alternating Series Test.

(b)

Step 1:  
Step 2:  
Final Answer:  
    (a)     converges
(b)

Return to Sample Exam