009A Sample Final 1, Problem 7

From Grad Wiki
Revision as of 13:32, 4 March 2016 by Grad (talk | contribs)
Jump to navigation Jump to search

A curve is defined implicitly by the equation

a) Using implicit differentiation, compute  .

b) Find an equation of the tangent line to the curve at the point .

Foundations:  
1. What is the result of implicit differentiation of
It would be    by the Product Rule.
2. What two pieces of information do you need to write the equation of a line?
You need the slope of the line and a point on the line.
3. What is the slope of the tangent line of a curve?
The slope is 

Solution:

(a)

Step 1:  
Using implicit differentiation on the equation  we get
Step 2:  
Now, we move all the    terms to one side of the equation.
So, we have
We solve to get  

(b)

Step 1:  
First, we find the slope of the tangent line at the point  
We plug   into the formula for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx}}   we found in part (a).
So, we get
Step 2:  
Now, we have the slope of the tangent line at   and a point.
Thus, we can write the equation of the line.
So, the equation of the tangent line at   is
Final Answer:  
(a)
(b)

Return to Sample Exam