Compute the following integrals.
a)
b)
c)
| Foundations:
|
| Recall:
|
1. Integration by parts tells us that .
|
2. Through partial fraction decomposition, we can write the fraction for some constants .
|
3. We have the Pythagorean identity .
|
Solution:
(a)
| Step 1:
|
| We first distribute to get
|

|
| Now, for the first integral on the right hand side of the last equation, we use integration by parts.
|
Let and . Then, and .
|
| So, we have
|

|
| Step 2:
|
Now, for the one remaining integral, we use -substitution.
|
Let . Then, .
|
| So, we have
|

|
(b)
| Step 1:
|
First, we add and subtract from the numerator.
|
| So, we have
|

|
| Step 2:
|
| Now, we need to use partial fraction decomposition for the second integral.
|
Since , we let .
|
Multiplying both sides of the last equation by ,
|
we get .
|
If we let , the last equation becomes .
|
If we let , then we get . Thus, .
|
So, in summation, we have .
|
| Step 3:
|
| If we plug in the last equation from Step 2 into our final integral in Step 1, we have
|

|
| Step 4:
|
For the final remaining integral, we use -substitution.
|
Let . Then, and .
|
| Thus, our final integral becomes
|

|
| Therefore, the final answer is
|

|
(c)
| Step 1:
|
First, we write .
|
Using the identity , we get .
|
| If we use this identity, we have
|
.
|
|
|
| Step 2:
|
| Now, we proceed by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u}
-substitution. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\cos x}
. Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=-\sin x dx}
.
|
| So we have
|
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int\sin^3x~dx} & = & \displaystyle{\int -(1-u^2)~du}\\ &&\\ & = & \displaystyle{-u+\frac{u^3}{3}+C}\\ &&\\ & = & \displaystyle{-\cos x+\frac{\cos^3x}{3}+C}.\\ \end{array}}
|
|
|
| Final Answer:
|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle xe^x-e^x-\cos(e^x)+C}
|
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x+\ln x-\frac{3}{2}\ln (2x+1) +C}
|
| (c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\cos x+\frac{\cos^3x}{3}+C}
|
Return to Sample Exam