009C Sample Final 1, Problem 3

From Grad Wiki
Revision as of 10:55, 9 February 2016 by Kayla Murray (talk | contribs)
Jump to navigation Jump to search

Determine whether the following series converges or diverges.

Foundations:  
Review Ratio Test

Solution:

Step 1:  
We proceed using the ratio test.
We have
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{n\rightarrow \infty }{\bigg |}{\frac {a_{n+1}}{a_{n}}}{\bigg |}}&=&\displaystyle {\lim _{n\rightarrow \infty }{\bigg |}{\frac {(-1)^{n+1}(n+1)!}{(n+1)^{n+1}}}{\frac {n^{n}}{(-1)^{n}n!}}{\bigg |}}\\&&\\&=&\displaystyle {\lim _{n\rightarrow \infty }{\bigg |}{\frac {(n+1)n!}{n!}}{\frac {n^{n}}{(n+1)^{n+1}}}{\bigg |}}\\&&\\&=&\displaystyle {\lim _{n\rightarrow \infty }{\bigg |}{\frac {(n+1)n^{n}}{(n+1)(n+1)^{n}}}{\bigg |}}\\&&\\&=&\displaystyle {\lim _{n\rightarrow \infty }{\bigg |}{\bigg (}{\frac {n}{n+1}}{\bigg )}^{n}{\bigg |}}\\&&\\&=&\displaystyle {\lim _{n\rightarrow \infty }{\bigg (}{\frac {n}{n+1}}{\bigg )}^{n}}\\\end{array}}}
Step 2:  
Now, we continue to calculate the limit from Step 1. We have
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{n\rightarrow \infty }{\bigg |}{\frac {a_{n+1}}{a_{n}}}{\bigg |}}&=&\displaystyle {\lim _{n\rightarrow \infty }{\bigg (}{\frac {n}{n+1}}{\bigg )}^{n}}\\&&\\&=&\displaystyle {\lim _{n\rightarrow \infty }e^{\ln({\frac {n}{n+1}})^{n}}}\\&&\\&=&\displaystyle {\lim _{n\rightarrow \infty }e^{n\ln({\frac {n}{n+1}})}}\\&&\\&=&\displaystyle {e^{\lim _{n\rightarrow \infty }n\ln({\frac {n}{n+1}})}}\\\end{array}}}
Step 3:  
Now, we need to calculate .
First, we write the limit as Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{n\rightarrow \infty }{\frac {\ln {\bigg (}{\frac {n}{n+1}}{\bigg )}}{\frac {1}{n}}}} .
Now, we use L'Hopital's Rule to get
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{n\rightarrow \infty }n\ln {\bigg (}{\frac {n}{n+1}}{\bigg )}}&=&\displaystyle {\lim _{n\rightarrow \infty }{\frac {{\frac {n+1}{n}}{\frac {(n+1)-n}{(n+1)^{2}}}}{-{\frac {1}{n^{2}}}}}}\\&&\\&=&\displaystyle {\lim _{n\rightarrow \infty }{\frac {1}{n(n+1)}}(-n^{2})}\\&&\\&=&\displaystyle {\lim _{n\rightarrow \infty }{\frac {-n}{n+1}}}\\&&\\&=&\displaystyle {-1}\\\end{array}}}
Step 4:  
We go back to Step 2 and use the limit we calculated in Step 3.
So, we have
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{n\rightarrow \infty }{\bigg |}{\frac {a_{n+1}}{a_{n}}}{\bigg |}=e^{-1}={\frac {1}{e}}<1} .
Thus, the series absolutely converges by the Ratio Test.
Since the series absolutely converges, the series also converges.
Final Answer:  
The series converges.

Return to Sample Exam