Calculate the following integrals
- a)

- b)

solution(a):
|
Here we change order of integration,
solution(b):
|
Here we change order of integration, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int _0^{\frac{\pi}{2}} \int_0^{cos(x)} e^{2x - y}~dydx = \int _0^{\frac{\pi}{2}}[-e^{2x -y}|_{y = 0}^{y = cos(x)}]~dx = \int_0^{\frac{\pi}{2}} [e^{2x} - e^{2x - cos(x)}]~dx = \frac{1}{2}e^{2x} - \frac{1}{2 + sin(x)}e^{2x - cos(x)}|_0^{\frac{\pi}{2} = \frac{1}{2}(e - 1)}
|
|