Calculate the following integrals
- a)

- b)

solution(a):
|
Here we change order of integration,
solution(b):
|
Here we change order of integration, Failed to parse (syntax error): {\displaystyle \int _0^{\frac{\pi}{2}} \int_0^{cos(x)} e^{2x - y}~dydx = \int _0^{\frac{\pi}{2}[-e^{2x -y}|_{y = 0}^{y = cos(x)}]~dx = \int_0^1 x(e - 1)~dx = \frac{1}{2}x^2|_0^1(e - 1) = \frac{1}{2}(e - 1)}
|
|