Evaluate the improper integrals:
- a)

- b)

| Foundations:
|
| Review integration by parts
|
Solution:
(a)
| Step 1:
|
First, we write .
|
Now, we proceed using integration by parts. Let and . Then, and .
|
| Thus, the integral becomes
|
|
| Step 2:
|
For the remaining integral, we need to use -substitution. Let . Then, .
|
| Since the integral is a definite integral, we need to change the bounds of integration.
|
Plugging in our values into the equation , we get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_1=0}
and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_2=-a}
.
|
| Thus, the integral becomes
|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \left.-xe^{-x}\right|_0^a-\int_0^{-a}e^{u}du=\lim_{a\rightarrow \infty} \left.-xe^{-x}\right|_0^a-\left.e^{u}\right|_0^{-a}=\lim_{a\rightarrow \infty} -ae^{-a}-(e^{-a}-1)}
|
| Step 3:
|
| Now, we evaluate to get
|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} -ae^{-a}-(e^{-a}-1)=\lim_{a\rightarrow \infty} \frac{-a}{e^a}-\frac{1}{e^a}+1=\lim_{a\rightarrow \infty} \frac{-a-1}{e^a}+1}
.
|
| Using L'Hopital's Rule, we get
|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \frac{-1}{e^a}+1=0+1=1}
.
|
|
|
(b)
| Final Answer:
|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1}
|
| (b)
|
Return to Sample Exam