009B Sample Final 1
This is a sample, and is meant to represent the material usually covered in Math 9B for the midterm. An actual test may or may not be similar. Click on the boxed problem numbers to go to a solution.
Problem 1
Consider the region bounded by the following two functions:
- and
- a) Using the lower sum with three rectangles having equal width , approximate the area.
- b) Using the upper sum with three rectangles having equal width, approximate the area.
- c) Find the actual area of the region.
Problem 2
We would like to evaluate
- .
- a) Compute .
- b) Find .
- c) State the fundamental theorem of calculus.
- d) Use the fundamental theorem of calculus to compute without first computing the integral.
Problem 3
Consider the area bounded by the following two functions:
- and
- a) Find the three intersection points of the two given functions. (Drawing may be helpful.)
- b) Find the area bounded by the two functions.
Problem 4
Let .
- a) Compute the left-hand Riemann sum approximation of with boxes.
- b) Compute the right-hand Riemann sum approximation of with boxes.
- c) Express as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.
Problem 5
Let .
- a) Compute the left-hand Riemann sum approximation of with boxes.
- b) Compute the right-hand Riemann sum approximation of with boxes.
- c) Express as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.
Problem 6
Let .
- a) Compute the left-hand Riemann sum approximation of with boxes.
- b) Compute the right-hand Riemann sum approximation of with boxes.
- c) Express as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.
Problem 7
Let .
- a) Compute the left-hand Riemann sum approximation of with boxes.
- b) Compute the right-hand Riemann sum approximation of with boxes.
- c) Express as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.