Implicit Differentiation
Background
So far, you may only have differentiated functions written in the form . But some functions are better described by an equation involving and . For example, describes the graph of a circle with center and radius 4, and is really the graph of two functions: .
Sometimes, functions described by equations in and are too hard to solve for , for example . This equation really describes 3 different functions of x, whose graph is the curve:
We want to find derivatives of these functions without having to solve for explicitly. We can do this by implicit differentiation, where we take the derivative of both sides of our equation with respect to , and do some algebra steps to solve for (or if you prefer), keeping in mind that is a function of in the equation.