Section 1.10 Homework

From Grad Wiki
Revision as of 15:19, 12 November 2015 by Grad (talk | contribs)
Jump to navigation Jump to search

3. Let be a linear map and a subspace. Show that: is a subspace of .

Proof: Suppose . Then . But is a subspace and so . But is linear so that so that . Thus, is closed under vector addition. Now suppose and . Then and since is a subspace, . But again is linear so . This means . Hence is closed under scalar multiplication. Therefore is a subspace of .

10. Show that if and are subspaces, then is also a subspace.

Proof: Suppose . Then and . But is a subspace and so . Also is a subspace so . This means Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle (x_{1}+x_{2},y_{1}+y_{2})\in M\times N} . On the other hand Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle (x_{1},y_{1})+(x_{2},y_{2})=(x_{1}+x_{2},y_{1}+y_{2})} . Thus, is closed under vector addition. Now suppose Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle (x,y)\in M\times N} and . Then Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x\in M} and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle y\in N} . But and are subspaces so Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \alpha x\in M} and . That means . This means Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \alpha (x,y)=(\alpha x,\alpha y)\in M\times N} . Hence is closed under scalar multiplication. Therefore is a subspace of .

12. Let be a linear map and consider the graph Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle G_{L}=\{(x,L(x)):x\in V\}\subset V\times W} (a) Show that is a subspace.

Proof: Suppose . Then Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle (x_{1},L(x_{1})+(x_{2},L(x_{2})=(x_{1}+x_{2},L(x_{1})+L(x_{2}))=(x_{1}+x_{2},L(x_{1}+x_{2})\in G_{L}} . Here I used the fact that is linear which means Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle L(x_{1})+L(x_{2})=L(x_{1}+x_{2})} . Thus, is closed under vector addition. Now suppose Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle (x,L(x))\in G_{L}} and . Then Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \alpha (x,L(x))=(\alpha x,\alpha L(x))=(\alpha x,L(\alpha x)\in G_{L}} . Again I used the linearity property to conclude Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \alpha L(x)=L(\alpha x)} . Hence is closed under scalar multiplication. Therefore is a subspace of .

(b) Show that the map Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle V\to G_{L}} that sends to is an isomorphism.

Proof: Call this map Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\hat {L}}:V\to G_{L}} . That is Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\hat {L}}(x)=(x,L(x))} . First I will show this map is linear: Failed to parse (syntax error): {\displaystyle \hat{L}(x_1+x_2) & =(x_1+x_2, L(x_1+x_2)) = (x_1+x_2,L(x_1)+L(x_2)) = (x_1,L(x_1))+(x_2,L(x_2)) \\ & = \hat{L}(x_1)+\hat{L}(x_2)} and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\hat {L}}(\alpha x)=(\alpha x,L(\alpha x))=(\alpha x,\alpha L(x))=\alpha (x,L(x))=\alpha {\hat {L}}(x)} . Thus Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\hat {L}}} is linear. Now to show Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\hat {L}}} is bijective. If Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle (x,L(x))\in G_{L}} , then Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\hat {L}}(x)=(x,L(x))} so Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\hat {L}}} is trivially onto. In fact, we essentially chose to the codomain of our function to just be the image/range of the map to ensure it was onto. Now to show is one-to-one. Suppose Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\hat {L}}(x_{1})={\hat {L}}(x_{2})} . Then Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle (x_{1},L(x_{1}))=(x_{2},L(x_{2})} . But two ordered pairs are equal if and only if both components are equal. That is, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x_{1}=x_{2}} . Thus is one-to-one. Therefore is an isomorphism.