009C Sample Final 2, Problem 9
A curve is given in polar coordinates by
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=\sin(2\theta).}
(a) Sketch the curve.
(b) Compute Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'=\frac{dy}{dx}.}
(c) Compute Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y''=\frac{d^2y}{dx^2}.}
| Foundations: |
|---|
| How do you calculate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'} for a polar curve Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=f(\theta)?} |
|
Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=r\cos(\theta),~y=r\sin(\theta),} we have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.} |
Solution:
| (a) |
|---|
| Insert sketch of graph |
(b)
| Step 1: |
|---|
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=\sin(2\theta),} |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dr}{d\theta}=2\cos(2\theta).} |
| Step 2: |
|---|
| Since |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta},} |
| we have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{y'} & = & \displaystyle{\frac{2\cos(2\theta)\sin\theta+\sin(2\theta)\cos\theta}{2\cos(2\theta)\cos \theta-\sin(2\theta)\sin\theta}}\\ &&\\ & = & \displaystyle{\frac{2\cos^2\theta \sin\theta-\sin^3\theta}{\cos^3\theta-2\sin^2\theta\cos\theta}} \end{array}} |
| since |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin(2\theta)=2\sin\theta\cos\theta,~\cos(2\theta)=\cos^2\theta-\sin^2\theta.} |
(c)
| Step 1: |
|---|
| We have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d^2y}{dx^2}=\frac{\frac{dy'}{d\theta}}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.} |
| So, first we need to find Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy'}{d\theta}.} |
| We have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\frac{dy'}{d\theta}} & = & \displaystyle{\frac{d}{d\theta}\bigg(\frac{2\cos^2\theta \sin\theta-\sin^3\theta}{\cos^3\theta-2\sin^2\theta\cos\theta}\bigg)}\\ &&\\ & = & \displaystyle{\frac{(\cos^3\theta-2\sin^2\theta\cos\theta)(-4\cos\theta\sin^2\theta+2\cos^3\theta-3\sin^2\theta\cos\theta)-(2\cos^2\theta\sin\theta-\sin^3\theta)(-3\cos^2\theta\sin\theta-4\sin \theta\cos^2\theta+2\sin^3\theta)}{(\cos^3\theta-2\sin^2\theta\cos\theta)^2}.} \end{array}} |
| Step 2: |
|---|
| Now, using the resulting formula for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy'}{d\theta},} we get |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d^2y}{dx^2}=\frac{(\cos^3\theta-2\sin^2\theta\cos\theta)(-4\cos\theta\sin^2\theta+2\cos^3\theta-3\sin^2\theta\cos\theta)-(2\cos^2\theta\sin\theta-\sin^3\theta)(-3\cos^2\theta\sin\theta-4\sin \theta\cos^2\theta+2\sin^3\theta)}{(\cos^3\theta-2\sin^2\theta\cos\theta)^2(2\cos(2\theta)\cos \theta-\sin(2\theta)\sin\theta)}.} |
| Final Answer: |
|---|
| (a) See above |
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'=\frac{2\cos^2\theta \sin\theta-\sin^3\theta}{\cos^3\theta-2\sin^2\theta\cos\theta}} |
| (c) |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d^2y}{dx^2}=\frac{(\cos^3\theta-2\sin^2\theta\cos\theta)(-4\cos\theta\sin^2\theta+2\cos^3\theta-3\sin^2\theta\cos\theta)-(2\cos^2\theta\sin\theta-\sin^3\theta)(-3\cos^2\theta\sin\theta-4\sin \theta\cos^2\theta+2\sin^3\theta)}{(\cos^3\theta-2\sin^2\theta\cos\theta)^2(2\cos(2\theta)\cos \theta-\sin(2\theta)\sin\theta)}} |