009C Sample Final 2, Problem 9

From Grad Wiki
Revision as of 12:19, 5 March 2017 by Kayla Murray (talk | contribs)
Jump to navigation Jump to search

A curve is given in polar coordinates by

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=\sin(2\theta).}

(a) Sketch the curve.

(b) Compute  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'=\frac{dy}{dx}.}

(c) Compute  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y''=\frac{d^2y}{dx^2}.}

Foundations:  
How do you calculate   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'}   for a polar curve  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=f(\theta)?}

       Since   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=r\cos(\theta),~y=r\sin(\theta),}   we have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.}


Solution:

(a)  
Insert sketch of graph

(b)

Step 1:  
Since  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=\sin(2\theta),}

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dr}{d\theta}=2\cos(2\theta).}

Step 2:  
Since

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta},}

we have

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{y'} & = & \displaystyle{\frac{2\cos(2\theta)\sin\theta+\sin(2\theta)\cos\theta}{2\cos(2\theta)\cos \theta-\sin(2\theta)\sin\theta}}\\ &&\\ & = & \displaystyle{\frac{2\cos^2\theta \sin\theta-\sin^3\theta}{\cos^3\theta-2\sin^2\theta\cos\theta}} \end{array}}

since
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin(2\theta)=2\sin\theta\cos\theta,~\cos(2\theta)=\cos^2\theta-\sin^2\theta.}

(c)

Step 1:  
We have   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d^2y}{dx^2}=\frac{\frac{dy'}{d\theta}}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.}
So, first we need to find   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy'}{d\theta}.}
We have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\frac{dy'}{d\theta}} & = & \displaystyle{\frac{d}{d\theta}\bigg(\frac{2\cos^2\theta \sin\theta-\sin^3\theta}{\cos^3\theta-2\sin^2\theta\cos\theta}\bigg)}\\ &&\\ & = & \displaystyle{\frac{(\cos^3\theta-2\sin^2\theta\cos\theta)(-4\cos\theta\sin^2\theta+2\cos^3\theta-3\sin^2\theta\cos\theta)-(2\cos^2\theta\sin\theta-\sin^3\theta)(-3\cos^2\theta\sin\theta-4\sin \theta\cos^2\theta+2\sin^3\theta)}{(\cos^3\theta-2\sin^2\theta\cos\theta)^2}.} \end{array}}

Step 2:  
Now, using the resulting formula for   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy'}{d\theta},}   we get

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d^2y}{dx^2}=\frac{(\cos^3\theta-2\sin^2\theta\cos\theta)(-4\cos\theta\sin^2\theta+2\cos^3\theta-3\sin^2\theta\cos\theta)-(2\cos^2\theta\sin\theta-\sin^3\theta)(-3\cos^2\theta\sin\theta-4\sin \theta\cos^2\theta+2\sin^3\theta)}{(\cos^3\theta-2\sin^2\theta\cos\theta)^2(2\cos(2\theta)\cos \theta-\sin(2\theta)\sin\theta)}.}


Final Answer:  
    (a)    See above
    (b)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'=\frac{2\cos^2\theta \sin\theta-\sin^3\theta}{\cos^3\theta-2\sin^2\theta\cos\theta}}
    (c)    
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d^2y}{dx^2}=\frac{(\cos^3\theta-2\sin^2\theta\cos\theta)(-4\cos\theta\sin^2\theta+2\cos^3\theta-3\sin^2\theta\cos\theta)-(2\cos^2\theta\sin\theta-\sin^3\theta)(-3\cos^2\theta\sin\theta-4\sin \theta\cos^2\theta+2\sin^3\theta)}{(\cos^3\theta-2\sin^2\theta\cos\theta)^2(2\cos(2\theta)\cos \theta-\sin(2\theta)\sin\theta)}}

Return to Sample Exam