009C Sample Final 1, Problem 9
Revision as of 15:28, 26 February 2017 by Kayla Murray (talk | contribs)
A curve is given in polar coordinates by
Find the length of the curve.
| Foundations: |
|---|
| 1. The formula for the arc length of a polar curve with is |
|
|
| 2. How would you integrate |
|
You could use trig substitution and let |
| 3. Recall that |
Solution:
| Step 1: |
|---|
| First, we need to calculate . |
| Since |
| Using the formula in Foundations, we have |
|
|
| Step 2: |
|---|
| Now, we proceed using trig substitution. Let Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d\theta=\sec^2xdx.} |
| So, the integral becomes |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{L} & = & \displaystyle{\int_{\theta=0}^{\theta=2\pi}\sqrt{\tan^2x+1}\sec^2xdx}\\ &&\\ & = & \displaystyle{\int_{\theta=0}^{\theta=2\pi}\sec^3xdx}\\ &&\\ & = & \displaystyle{\frac{1}{2}\sec x \tan x +\frac{1}{2}\ln|\sec x +\tan x|\bigg|_{\theta=0}^{\theta=2\pi}.}\\ \end{array}} |
| Step 3: |
|---|
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta=\tan x,} we have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=\tan^{-1}\theta .} |
| So, we have |
|
|
| Final Answer: |
|---|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}\sec(\tan^{-1}(2\pi))2\pi+\frac{1}{2}\ln|\sec(\tan^{-1}(2\pi))+2\pi|} |