009C Sample Final 1, Problem 9

From Grad Wiki
Revision as of 15:28, 26 February 2017 by Kayla Murray (talk | contribs)
Jump to navigation Jump to search

A curve is given in polar coordinates by

Find the length of the curve.

Foundations:  
1. The formula for the arc length    of a polar curve    with    is

       

2. How would you integrate

       You could use trig substitution and let  

3. Recall that


Solution:

Step 1:  
First, we need to calculate  .
Since  
Using the formula in Foundations, we have

       

Step 2:  
Now, we proceed using trig substitution. Let     Then,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d\theta=\sec^2xdx.}
So, the integral becomes

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{L} & = & \displaystyle{\int_{\theta=0}^{\theta=2\pi}\sqrt{\tan^2x+1}\sec^2xdx}\\ &&\\ & = & \displaystyle{\int_{\theta=0}^{\theta=2\pi}\sec^3xdx}\\ &&\\ & = & \displaystyle{\frac{1}{2}\sec x \tan x +\frac{1}{2}\ln|\sec x +\tan x|\bigg|_{\theta=0}^{\theta=2\pi}.}\\ \end{array}}

Step 3:  
Since   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta=\tan x,}   we have  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=\tan^{-1}\theta .}
So, we have

       


Final Answer:  
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}\sec(\tan^{-1}(2\pi))2\pi+\frac{1}{2}\ln|\sec(\tan^{-1}(2\pi))+2\pi|}

Return to Sample Exam