009A Sample Final 3, Problem 7

From Grad Wiki
Revision as of 16:16, 20 May 2017 by Kayla Murray (talk | contribs)
Jump to navigation Jump to search

Compute

(a)  

(b)  

(c)  

Foundations:  
L'Hôpital's Rule, Part 1

        Let    and    where    and    are differentiable functions

       on an open interval    containing    and    on    except possibly at   
       Then,  


Solution:

(a)

Step 1:  
We begin by noticing that we plug in    into
       
we get  
Step 2:  
Now, we multiply the numerator and denominator by the conjugate of the denominator.
Hence, we have
        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow 0}{\frac {x}{3-{\sqrt {9-x}}}}}&=&\displaystyle {\lim _{x\rightarrow 0}{\frac {x}{3-{\sqrt {9-x}}}}{\frac {(3+{\sqrt {9-x}})}{(3+{\sqrt {9-x}})}}}\\&&\\&=&\displaystyle {\lim _{x\rightarrow 0}{\frac {x(3+{\sqrt {9-x}})}{9-(9-x)}}}\\&&\\&=&\displaystyle {\lim _{x\rightarrow 0}{\frac {x(3+{\sqrt {9-x}})}{x}}}\\&&\\&=&\displaystyle {\lim _{x\rightarrow 0}{\frac {3+{\sqrt {9-x}}}{1}}}\\&&\\&=&\displaystyle {\frac {3+{\sqrt {9}}}{1}}\\&&\\&=&\displaystyle {\frac {6}{1}}\\&&\\&=&\displaystyle {6.}\end{array}}}

(b)

Step 1:  
We proceed using L'Hôpital's Rule. So, we have

       

Step 2:  
Now, we plug in    to get
       

(c)

Step 1:  
We begin by factoring the numerator and denominator. We have

       

So, we can cancel    in the numerator and denominator. Thus, we have

       

Step 2:  
Now, we can just plug in    to get
       


Final Answer:  
   (a)   
   (b)   
   (c)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{5}{12}}

Return to Sample Exam