Integration by Parts

From Grad Wiki
Revision as of 10:50, 26 October 2017 by Kayla Murray (talk | contribs)
Jump to navigation Jump to search

Introduction

Let's say we want to integrate

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int x^2e^{x^3}~dx.}

Here, we can compute this antiderivative by using  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u-} substitution.

While  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u-} substitution is an important integration technique, it will not help us evaluate all integrals.

For example, consider the integral

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int xe^x~dx.}

There is no substitution that will allow us to integrate this integral.

We need another integration technique called integration by parts.

The formula for integration by parts comes from the product rule for derivatives.

Recall from the product rule,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (fg)'=f'g+g'f.}

Warm-Up

Calculate  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x).}

1)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=(x^2+x+1)(x^3+2x^2+4)}

Solution:  
Using the Product Rule, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=(x^2+x+1)(x^3+2x^2+4)'+(x^2+x+1)'(x^3+2x^2+4).}
Then, using the Power Rule, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=(x^2+x+1)(3x^2+4x)+(2x+1)(x^3+2x^2+4).}
NOTE: It is not necessary to use the Product Rule to calculate the derivative of this function.
You can distribute the terms and then use the Power Rule.
In this case, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f(x)} & = & \displaystyle{(x^2+x+1)(x^3+2x^2+4)}\\ &&\\ & = & \displaystyle{x^2(x^3+2x^2+4)+x(x^3+2x^2+4)+1(x^3+2x^2+4)}\\ &&\\ & = & \displaystyle{x^5+2x^4+4x^2+x^4+2x^3+4x+x^3+2x^2+4} \\ &&\\ & = & \displaystyle{x^5+3x^4+3x^3+6x^2+4x+4.} \end{array}}
Now, using the Power Rule, we get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=5x^4+12x^3+9x^2+12x+4.}
In general, calculating derivatives in this way is tedious. It would be better to use the Product Rule.
Final Answer:  
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=(x^2+x+1)(3x^2+4x)+(2x+1)(x^3+2x^2+4)}
or equivalently
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=x^5+3x^4+3x^3+6x^2+4x+4}

2)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\frac{x^2+x^3}{x}}

Solution:  

Using the Quotient Rule, we have

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=\frac{x(x^2+x^3)'-(x^2+x^3)(x)'}{x^2}.}
Then, using the Power Rule, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=\frac{x(2x+3x^2)-(x^2+x^3)(1)}{x^2}.}
NOTE: It is not necessary to use the Quotient Rule to calculate the derivative of this function.
You can divide and then use the Power Rule.
In this case, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f(x)} & = & \displaystyle{\frac{x^2+x^3}{x}}\\ &&\\ & = & \displaystyle{\frac{x^2}{x}+\frac{x^3}{x}}\\ &&\\ & = & \displaystyle{x+x^2.} \\ \end{array}}
Now, using the Power Rule, we get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=1+2x.}
Final Answer:  
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=\frac{x(2x+3x^2)-(x^2+x^3)}{x^2}}
or equivalently
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=1+2x}

3)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\frac{\sin x}{\cos x}}

Solution:  
Using the Quotient Rule, we get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{\frac{\cos x(\sin x)'-\sin x (\cos x)'}{(\cos x)^2}}\\ &&\\ & = & \displaystyle{\frac{\cos x(\cos x)-\sin x (-\sin x)}{(\cos x)^2}}\\ &&\\ & = & \displaystyle{\frac{\cos^2 x+\sin^2 x}{\cos^2 x}} \\ &&\\ & = & \displaystyle{\frac{1}{\cos^2 x}}\\ &&\\ & = & \displaystyle{\sec^2 x} \end{array}}
since  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin^2 x+\cos^2 x=1}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sec x=\frac{1}{\cos x}.}
Since  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\sin x}{\cos x}=\tan x,}   we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}{\tan x}=\sec^2 x.}
Final Answer:  
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=\sec^2 x}

Exercise 1

Calculate the derivative of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\frac{1}{x^2}(\csc x-4).}

First, we need to know the derivative of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \csc x.}   Recall

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \csc x =\frac{1}{\sin x}.}

Now, using the Quotient Rule, we have

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\frac{d}{dx}(\csc x)} & = & \displaystyle{\frac{d}{dx}\bigg(\frac{1}{\sin x}\bigg)}\\ &&\\ & = & \displaystyle{\frac{\sin x (1)'-1(\sin x)'}{\sin^2 x}}\\ &&\\ & = & \displaystyle{\frac{\sin x (0)-\cos x}{\sin^2 x}}\\ &&\\ & = & \displaystyle{\frac{-\cos x}{\sin^2 x}} \\ &&\\ & = & \displaystyle{-\csc x \cot x.} \end{array}}

Using the Product Rule and Power Rule, we have

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{\frac{1}{x^2}(\csc x-4)'+\bigg(\frac{1}{x^2}\bigg)'(\csc x-4)}\\ &&\\ & = & \displaystyle{\frac{1}{x^2}(-\csc x \cot x+0)+(-2x^{-3})(\csc x-4)}\\ &&\\ & = & \displaystyle{\frac{-\csc x \cot x}{x^2}+\frac{-2(\csc x-4)}{x^3}.} \end{array}}

So, we have

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=\frac{-\csc x \cot x}{x^2}+\frac{-2(\csc x-4)}{x^3}.}

Exercise 2

Calculate the derivative of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)=2x\sin x \sec x.}

Notice that the function  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)}   is the product of three functions.

We start by grouping two of the functions together. So, we have  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)=(2x\sin x)\sec x.}

Using the Product Rule, we get

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{g'(x)} & = & \displaystyle{(2x\sin x)(\sec x)'+(2x\sin x)'\sec x}\\ &&\\ & = & \displaystyle{(2x\sin x)(\tan^2 x)+(2x\sin x)'\sec x.} \end{array}}

Now, we need to use the Product Rule again. So,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{g'(x)} & = & \displaystyle{2x\sin x\tan^2 x+(2x(\sin x)'+(2x)'\sin x)\sec x}\\ &&\\ & = & \displaystyle{2x\sin x\tan^2 x+(2x\cos x+2\sin x)\sec x.} \end{array}}

So, we have

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g'(x)=2x\sin x\tan^2 x+(2x\cos x+2\sin x)\sec x.}

But, there is another way to do this problem. Notice

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{g(x)} & = & \displaystyle{2x\sin x\sec x}\\ &&\\ & = & \displaystyle{2x\sin x\frac{1}{\cos x}}\\ &&\\ & = & \displaystyle{2x\tan x.} \end{array}}

Now, you would only need to use the Product Rule once instead of twice.

Exercise 3

Calculate the derivative of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(x)=\frac{x^2\sin x+1}{x^2\cos x+3}.}

Using the Quotient Rule, we have

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h'(x)=\frac{(x^2\cos x+3)(x^2\sin x+1)'-(x^2\sin x+1)(x^2\cos x+3)'}{(x^2\cos x+3)^2}.}

Now, we need to use the Product Rule. So, we have

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{h'(x)} & = & \displaystyle{\frac{(x^2\cos x+3)(x^2(\sin x)'+(x^2)'\sin x)-(x^2\sin x+1)(x^2(\cos x)'+(x^2)'\cos x)}{(x^2\cos x+3)^2}}\\ &&\\ & = & \displaystyle{\frac{(x^2\cos x+3)(x^2\cos x+2x\sin x)-(x^2\sin x+1)(-x^2\sin x+2x\cos x)}{(x^2\cos x+3)^2}.} \end{array}}

So, we get

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h'(x)=\frac{(x^2\cos x+3)(x^2\cos x+2x\sin x)-(x^2\sin x+1)(-x^2\sin x+2x\cos x)}{(x^2\cos x+3)^2}.}

Exercise 4

Calculate the derivative of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\frac{e^x}{x^2\sin x}.}

First, using the Quotient Rule, we have

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x (e^x)'-e^x(x^2\sin x)'}{(x^2\sin x)^2}}\\ &&\\ & = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\sin x)'}{x^4\sin^2 x}.} \end{array}}

Now, we need to use the Product Rule. So, we have

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2(\sin x)'+(x^2)'\sin x)}{x^4\sin^2 x}}\\ &&\\ & = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.} \end{array}}

So, we have

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.}