031 Review Part 3, Problem 1

From Grad Wiki
Revision as of 15:35, 13 October 2017 by Kayla Murray (talk | contribs)
Jump to navigation Jump to search

(a) Is the matrix    diagonalizable? If so, explain why and diagonalize it. If not, explain why not.

(b) Is the matrix    diagonalizable? If so, explain why and diagonalize it. If not, explain why not.


Foundations:  
Recall:
1. The eigenvalues of a triangular matrix are the entries on the diagonal.
2. By the Diagonalization Theorem, an    matrix    is diagonalizable
if and only if    has    linearly independent eigenvectors.


Solution:

(a)

Step 1:  
To answer this question, we examine the eigenvalues and eigenvectors of  
Since    is a triangular matrix, the eigenvalues are the entries on the diagonal.
Hence, the only eigenvalue of    is  
Step 2:  
Now, we find a basis for the eigenspace corresponding to    by solving  
We have
       
Solving this system, we see    is a free variable and  
Therefore, a basis for this eigenspace is
Step 3:  
Now, we know that    only has one linearly independent eigenvector.
By the Diagonalization Theorem,    must have  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2}   linearly independent eigenvectors to be diagonalizable.
Hence,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A}   is not diagonalizable.

(b)

Step 1:  
First, we find the eigenvalues of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A}   by solving  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{det }(A-\lambda I)=0.}
Using cofactor expansion, we have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\text{det }(A-\lambda I)} & = & \displaystyle{\text{det }\Bigg(\begin{bmatrix} 2 & 0 & -2 \\ 1 & 3 & 2 \\ 0 & 0 & 3 \end{bmatrix}-\begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}\Bigg)}\\ &&\\ & = & \displaystyle{\text{det }\Bigg(\begin{bmatrix} 2-\lambda & 0 & -2 \\ 1 & 3-\lambda & 2 \\ 0 & 0 & 3-\lambda \end{bmatrix}\Bigg)}\\ &&\\ & = & \displaystyle{(-1)^{(2+2)}(3-\lambda)\text{det }\bigg(\begin{bmatrix} 2-\lambda & -2 \\ 0 & 3-\lambda \end{bmatrix}\bigg)}\\ &&\\ & = & \displaystyle{(3-\lambda)(2-\lambda)(3-\lambda).} \end{array}}

Therefore, setting
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (3-\lambda)(2-\lambda)(3-\lambda)=0,}  
we find that the eigenvalues of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A}   are  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2.}
Step 2:  


Final Answer:  
   (a)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A}   is not diagonalizable.
   (b)    

Return to Sample Exam