031 Review Part 3, Problem 1
(a) Is the matrix diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
(b) Is the matrix diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
| Foundations: |
|---|
| Recall: |
| 1. The eigenvalues of a triangular matrix are the entries on the diagonal. |
| 2. By the Diagonalization Theorem, an matrix is diagonalizable |
|
Solution:
(a)
| Step 1: |
|---|
| To answer this question, we examine the eigenvalues and eigenvectors of |
| Since is a triangular matrix, the eigenvalues are the entries on the diagonal. |
| Hence, the only eigenvalue of is |
| Step 2: |
|---|
| Now, we find a basis for the eigenspace corresponding to by solving |
| We have |
| Solving this system, we see is a free variable and |
| Therefore, a basis for this eigenspace is |
|
|
| Step 3: |
|---|
| Now, we know that only has one linearly independent eigenvector. |
| By the Diagonalization Theorem, must have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2} linearly independent eigenvectors to be diagonalizable. |
| Hence, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is not diagonalizable. |
(b)
| Step 1: |
|---|
| First, we find the eigenvalues of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} by solving Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{det }(A-\lambda I)=0.} |
| Using cofactor expansion, we have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\text{det }(A-\lambda I)} & = & \displaystyle{\text{det }\Bigg(\begin{bmatrix} 2 & 0 & -2 \\ 1 & 3 & 2 \\ 0 & 0 & 3 \end{bmatrix}-\begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}\Bigg)}\\ &&\\ & = & \displaystyle{\text{det }\Bigg(\begin{bmatrix} 2-\lambda & 0 & -2 \\ 1 & 3-\lambda & 2 \\ 0 & 0 & 3-\lambda \end{bmatrix}\Bigg)}\\ &&\\ & = & \displaystyle{(-1)^{(2+2)}(3-\lambda)\text{det }\bigg(\begin{bmatrix} 2-\lambda & -2 \\ 0 & 3-\lambda \end{bmatrix}\bigg)}\\ &&\\ & = & \displaystyle{(3-\lambda)(2-\lambda)(3-\lambda).} \end{array}} |
| Therefore, setting |
|
| we find that the eigenvalues of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} are Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2.} |
| Step 2: |
|---|
| Final Answer: |
|---|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is not diagonalizable. |
| (b) |