Product Rule and Quotient Rule

From Grad Wiki
Revision as of 07:53, 26 September 2017 by Kayla Murray (talk | contribs)
Jump to navigation Jump to search

Introduction

Taking the derivatives of simple functions (i.e. polynomials) is easy using the power rule.

For example, if then

But, what about more complicated functions?

For example, what is when

Or what about when

Notice is a product and is a quotient. So, to answer the question of how to calculate these derivatives, we look to the Product Rule and the Quotient Rule. The Product Rule and the Quotient Rule give us formulas for calculating these derivatives.



Warm-Up

Evaluate the following indefinite integrals.

1)  

Solution:  
Let    Then,  
Plugging these into our integral, we get    which we know how to integrate.
So, we get
Final Answer:  
       

2)  

Solution:  
Let    Then,    Hence,   
Plugging these into our integral, we get
Final Answer:  
       

3)  

Solution:  
Let    Then,  
Plugging these into our integral, we get
Final Answer:  
       

4)  

Solution:  
Let    Then,    and   
Plugging these into our integral, we get
Final Answer:  
       

Exercise 1

Evaluate the indefinite integral  

First, we factor out    out of the denominator.

So, we have

Now, we use  -substitution. Let  

Then,    and  

Plugging these into our integral, we get

So, we have

Exercise 2

Evaluate the indefinite integral  

Let    Then,  

Plugging these into our integral, we get

So, we have

Exercise 3

Evaluate the indefinite integral  

Here, the substitution is not obvious.

Let    Then,    and  

Now, we need a way of getting rid of    in the numerator.

Solving for    in the first equation, we get  

Plugging these into our integral, we get

So, we get

Exercise 4

Evaluate the indefinite integral  

Let    Then,  

Now, we need a way of replacing  

If we solve for    in our first equation, we get  

Now, we square both sides of this last equation to get  

Plugging in to our integral, we get

So, we have