009B Sample Final 1, Problem 4

From Grad Wiki
Revision as of 11:43, 18 March 2017 by Kayla Murray (talk | contribs)
Jump to navigation Jump to search

Compute the following integrals.

(a)  

(b)  

(c)  

Foundations:  
1. Through partial fraction decomposition, we can write the fraction
       
       for some constants
2. Recall the Pythagorean identity
       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \sin ^{2}(x)=1-\cos ^{2}(x).}


Solution:

(a)

Step 1:  
We first note that

       

Now, we proceed by  -substitution.
Let    
Then,     and  
So, we have

       

Step 2:  
Now, we need to use trig substitution.
Let    Then,  
So, we have

       

(b)

Step 1:  
First, we add and subtract    from the numerator.
So, we have
Step 2:  
Now, we need to use partial fraction decomposition for the second integral.
Since    we let
       
Multiplying both sides of the last equation by  
we get
       
If we let   the last equation becomes  
If we let    then we get    Thus,  
So, in summation, we have
       
Step 3:  
If we plug in the last equation from Step 2 into our final integral in Step 1, we have

       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\int {\frac {2x^{2}+1}{2x^{2}+x}}~dx}&=&\displaystyle {\int ~dx+\int {\frac {1}{x}}~dx+\int {\frac {-3}{2x+1}}~dx}\\&&\\&=&\displaystyle {x+\ln x+\int {\frac {-3}{2x+1}}~dx.}\\\end{array}}}

Step 4:  
For the final remaining integral, we use  -substitution.
Let   
Then,    and  
Thus, our integral becomes

       

Therefore, the final answer is

       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int {\frac {2x^{2}+1}{2x^{2}+x}}~dx\,=\,x+\ln x-{\frac {3}{2}}\ln(2x+1)+C.}

(c)

Step 1:  
First, we write
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\sin^3x~dx=\int \sin^2 x \sin x~dx.}
Using the identity  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin^2x+\cos^2x=1,}   we get
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin^2x=1-\cos^2x.}
If we use this identity, we have
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\sin^3x~dx=\int (1-\cos^2x)\sin x~dx.}
Step 2:  
Now, we proceed by  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution.
Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\cos x.}   Then,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=-\sin x dx.}
So we have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int\sin^3x~dx} & = & \displaystyle{\int -(1-u^2)~du}\\ &&\\ & = & \displaystyle{-u+\frac{u^3}{3}+C}\\ &&\\ & = & \displaystyle{-\cos x+\frac{\cos^3x}{3}+C}.\\ \end{array}}


Final Answer:  
    (a)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}\arcsin(t^3)+C}
    (b)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x+\ln x-\frac{3}{2}\ln (2x+1) +C}
    (c)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\cos x+\frac{\cos^3x}{3}+C}

Return to Sample Exam