009A Sample Midterm 2, Problem 3

From Grad Wiki
Revision as of 09:14, 13 March 2017 by Kayla Murray (talk | contribs)
Jump to navigation Jump to search

Use the definition of the derivative to find     for the function  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\frac{1+x}{3x}.}


Foundations:  
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}}


Solution:

Step 1:  
Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\frac{1+x}{3x}.}
Using the limit definition of derivative, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{\lim_{h\rightarrow 0} \frac{f(x+h)-f(x)}{h}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0} \frac{(\frac{1+(x+h)}{3(x+h)})-(\frac{1+x}{3x})}{h}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0} \frac{(\frac{1+x+h}{3x+3h})-(\frac{1+x}{h})}{h}.} \end{array}}
Step 2:  
Now, we get a common denominator for the fractions in the numerator.
Hence, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{\lim_{h\rightarrow 0}\frac{\frac{(1+x+h)3x}{(3x+3h)(3x)}-\frac{(1+x)(3x+3h)}{(3x+3h)(3x)}}{h}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0}\frac{\frac{3x+3x^2+3xh-(3x+3h+3x^2+3hx)}{(3x+3h)(3x)}}{h}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0} \frac{-3h}{h(3x+3h)(3x)}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0} \frac{-3}{(3x+3h)(3x)}}\\ &&\\ & = & \displaystyle{\frac{-3}{(3x)(3x)}}\\ & = & \displaystyle{-\frac{1}{3x^2}.} \end{array}}


Final Answer:  
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx}=-\frac{1}{3x^2}}

Return to Sample Exam