009C Sample Midterm 1, Problem 3
Revision as of 18:53, 26 February 2017 by Kayla Murray (talk | contribs)
Determine whether the following series converges absolutely,
conditionally or whether it diverges.
Be sure to justify your answers!
Foundations: |
---|
1. A series is absolutely convergent if |
the series converges. |
2. A series is conditionally convergent if |
the series diverges and the series converges. |
Solution:
Step 1: |
---|
First, we take the absolute value of the terms in the original series. |
Let |
Therefore, |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\sum_{n=1}^\infty |a_n|} & = & \displaystyle{\sum_{n=1}^\infty \bigg|\frac{(-1)^n}{n}\bigg|}\\ &&\\ & = & \displaystyle{\sum_{n=1}^\infty \frac{1}{n}.} \end{array}} |
Step 2: |
---|
This series is the harmonic series (or -series with ). |
Thus, it diverges. Hence, the series |
is not absolutely convergent. |
Step 3: |
---|
Now, we need to look back at the original series to see |
if it conditionally converges. |
For |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^\infty \frac{(-1)^n}{n},} |
we notice that this series is alternating. |
Let |
The sequence is decreasing since |
for all |
Also, |
Therefore, the series converges |
by the Alternating Series Test. |
Step 4: |
---|
Since the series is not absolutely convergent but convergent, |
this series is conditionally convergent. |
Final Answer: |
---|
Conditionally convergent |