009C Sample Final 2, Problem 8

From Grad Wiki
Revision as of 11:49, 5 March 2017 by Kayla Murray (talk | contribs)
Jump to navigation Jump to search

Find    such that the Maclaurin polynomial of degree    of    approximates    within 0.0001 of the actual value.

Foundations:  
Taylor's Theorem
        Let    be a function whose  th derivative exists on an interval    and let    be in  
        Then, for each    in    there exists    between    and    such that
       
        where  
        Also,  


Solution:

Step 1:  
Using Taylor's Theorem, we have that the error in approximating    with
the Maclaurin polynomial of degree    is    where
       
Step 2:  
We note that
       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle |f^{n+1}(z)|=|\cos(z)|\leq 1}   or  
Therefore, we have
        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\bigg |}R_{n}{\bigg (}{\frac {\pi }{3}}{\bigg )}{\bigg |}\leq {\frac {1}{(n+1)!}}{\bigg (}{\frac {\pi }{3}}{\bigg )}^{n+1}.}
Now, we have the following table.
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \approx {\frac {1}{(n+1)!}}{\bigg (}{\frac {\pi }{3}}{\bigg )}^{n+1}}
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 0.191396}
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 0.050107}
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 0.01049}
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 0.000274}
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 0.0000358}
So,    is the smallest value of    where the error is less than or equal to 0.0001.
Therefore, for    the Maclaurin polynomial approximates    within 0.0001 of the actual value.


Final Answer:  
       

Return to Sample Exam