009A Sample Final 3, Problem 10
Revision as of 08:30, 7 March 2017 by Kayla Murray (talk | contribs)
Let
(a) Find the differential of at
(b) Use differentials to find an approximate value for Hint:
| Foundations: |
|---|
| What is the differential of at |
|
Since the differential is |
Solution:
(a)
| Step 1: |
|---|
| First, we find the differential |
| Since we have |
|
|
| Step 2: |
|---|
| Now, we plug into the differential from Step 1. |
| So, we get |
|
|
(b)
| Step 1: |
|---|
| Step 2: |
|---|
(c)
| Step 1: |
|---|
| Step 2: |
|---|
| Final Answer: |
|---|
| (a) |
| (b) |
| (c) |