009A Sample Midterm 2, Problem 4
Revision as of 11:39, 18 February 2017 by Kayla Murray (talk | contribs)
Find the derivatives of the following functions. Do not simplify.
- a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=x^3(x^{\frac{4}{3}}-1)}
- b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)=\frac{x^3+x^{-3}}{1+6x}} where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x>0}
| Foundations: |
|---|
| 1. Product Rule |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}(f(x)g(x))=f(x)g'(x)+f'(x)g(x)} |
| 2. Quotient Rule |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\bigg(\frac{f(x)}{g(x)}\bigg)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}} |
| 3. Power Rule |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}(x^n)=nx^{n-1}} |
Solution:
(a)
| Step 1: |
|---|
| Using the Product Rule, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=x^3(x^{\frac{4}{3}}-1)'+(x^3)'(x^{\frac{4}{3}}-1).} |
| Step 2: |
|---|
| Now, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{x^3(x^{\frac{4}{3}}-1)'+(x^3)'(x^{\frac{4}{3}}-1)}\\ &&\\ & = & \displaystyle{x^3\bigg(\frac{4}{3}x^{\frac{1}{3}}\bigg)+(3x^2)(x^{\frac{4}{3}}-1).} \end{array}} |
(b)
| Step 1: |
|---|
| Using the Quotient Rule, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g'(x)=\frac{(1+6x)(x^3+x^{-3})'-(x^3+x^{-3})(1+6x)'}{(1+6x)^2}.} |
| Step 2: |
|---|
| Now, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{g'(x)} & = & \displaystyle{\frac{(1+6x)(x^3+x^{-3})'-(x^3+x^{-3})(1+6x)'}{(1+6x)^2}}\\ &&\\ & = & \displaystyle{\frac{(1+6x)(3x^2-3x^{-4})-(x^3+x^{-3})(6)}{(1+6x)^2}.} \end{array}} |
| Final Answer: |
|---|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^3\bigg(\frac{4}{3}x^{\frac{1}{3}}\bigg)+(3x^2)(x^{\frac{4}{3}}-1)} |
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(1+6x)(3x^2-3x^{-4})-(x^3+x^{-3})(6)}{(1+6x)^2}} |