009A Sample Midterm 3, Problem 6

From Grad Wiki
Revision as of 11:34, 18 February 2017 by Kayla Murray (talk | contribs)
Jump to navigation Jump to search

Find the derivatives of the following functions. Do not simplify.

a)Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f(x)=\sin {\bigg (}{\frac {x^{-3}}{e^{-x}}}{\bigg )}}
b)Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle g(x)={\sqrt {\frac {x^{2}+2}{x^{2}+4}}}}
c)Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(x)=(x+\cos^2x)^8}


Foundations:  
1. Chain Rule
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}(f(g(x)))=f'(g(x))g'(x)}
2. Quotient Rule
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\bigg(\frac{f(x)}{g(x)}\bigg)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}}


Solution:

(a)

Step 1:  
First, using the Chain Rule, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{x^{-3}}{e^{-x}}\bigg)'.}
Step 2:  
Now, using the Quotient Rule and Chain Rule, we have

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{x^{-3}}{e^{-x}}\bigg)'}\\ &&\\ & = & \displaystyle{\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{e^{-x}(x^{-3})'-x^{-3}(e^{-x})'}{(e^{-x})^2}\bigg)}\\ &&\\ & = & \displaystyle{\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{e^{-x}(-3x^{-4})-x^{-3}(e^{-x})(-x)'}{(e^{-x})^2}\bigg)}\\ &&\\ & = & \displaystyle{\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{e^{-x}(-3x^{-4})-x^{-3}(e^{-x})(-1)}{(e^{-x})^2}\bigg).} \end{array}}

(b)

Step 1:  
First, using the Chain Rule, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g'(x)=\frac{1}{2}\bigg(\frac{x^2+2}{x^2+4}\bigg)^{-\frac{1}{2}}\bigg(\frac{x^2+2}{x^2+4}\bigg)'.}
Step 2:  
Now, using the Quotient Rule, we have

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{g'(x)} & = & \displaystyle{\frac{1}{2}\bigg(\frac{x^2+2}{x^2+4}\bigg)^{-\frac{1}{2}}\bigg(\frac{x^2+2}{x^2+4}\bigg)'}\\ &&\\ & = & \displaystyle{\frac{1}{2}\bigg(\frac{x^2+2}{x^2+4}\bigg)^{-\frac{1}{2}}\bigg(\frac{(x^2+4)(x^2+2)'-(x^2+2)(x^2+4)'}{(x^2+4)^2}\bigg)}\\ &&\\ & = & \displaystyle{\frac{1}{2}\bigg(\frac{x^2+2}{x^2+4}\bigg)^{-\frac{1}{2}}\bigg(\frac{(x^2+4)(2x)-(x^2+2)(2x)}{(x^2+4)^2}\bigg).} \end{array}}

(c)

Step 1:  
First, using the Chain Rule, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h'(x)=8(x+\cos^2(x))^7(x+\cos^2(x))'.}
Step 2:  
Now, using the Chain Rule again we get

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{h'(x)} & = & \displaystyle{8(x+\cos^2(x))^7(x+\cos^2(x))'}\\ &&\\ & = & \displaystyle{8(x+\cos^2(x))^7(1+2\cos(x)(\cos(x))')}\\ &&\\ & = & \displaystyle{8(x+\cos^2(x))^7(1-2\cos(x)\sin(x)).} \end{array}}


Final Answer:  
    (a)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{e^{-x}(-3x^{-4})-x^{-3}(e^{-x})(-1)}{(e^{-x})^2}\bigg)}
    (b)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}\bigg(\frac{x^2+2}{x^2+4}\bigg)^{-\frac{1}{2}}\bigg(\frac{(x^2+4)(2x)-(x^2+2)(2x)}{(x^2+4)^2}\bigg)}
    (c)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 8(x+\cos^2(x))^7(1-2\cos(x)\sin(x))}

Return to Sample Exam