009C Sample Midterm 2, Problem 4

From Grad Wiki
Revision as of 09:19, 13 February 2017 by Kayla Murray (talk | contribs)
Jump to navigation Jump to search

Find the radius of convergence and interval of convergence of the series.

a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^\infty n^nx^n}
b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^\infty \frac{(x+1)^n}{\sqrt{n}}}


Foundations:  
Root Test
Ratio Test


Solution:

(a)

Step 1:  
We begin by applying the Root Test.
We have

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{n\rightarrow \infty} \sqrt{|a_n|}} & = & \displaystyle{\lim_{n\rightarrow \infty} \sqrt{|n^nx^n|}}\\ &&\\ & = & \displaystyle{\lim_{n\rightarrow \infty} |n^nx^n|^{\frac{1}{n}}}\\ &&\\ & = & \displaystyle{\lim_{n\rightarrow \infty} |nx|}\\ &&\\ & = & \displaystyle{n|x|}\\ &&\\ & = & \displaystyle{|x|\lim_{n\rightarrow \infty} n}\\ &&\\ & = & \displaystyle{\infty} \end{array}}

Step 2:  
This means that as long as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\ne 0,} this series diverges.
Hence, the radius of convergence is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R=0} and
the interval of convergence is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{0\}.}

(b)

Step 1:  
Step 2:  


Final Answer:  
    (a)     The radius of convergence is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R=0} and the interval of convergence is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{0\}.}
    (b)     The radius of convergence is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R=1} and the interval fo convergence is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (2,4].}

Return to Sample Exam