A curve is given in polar coordinates by

a) Sketch the curve.
b) Compute
.
c) Compute
.
| Foundations:
|
How do you calculate for a polar curve ?
|
- Since
, we have
|
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle y'={\frac {dy}{dx}}={\frac {{\frac {dr}{d\theta }}\sin \theta +r\cos \theta }{{\frac {dr}{d\theta }}\cos \theta -r\sin \theta }}}
.
|
Solution:
(a)
| Step 1:
|
| Insert sketch of graph
|
(b)
| Step 1:
|
| First, recall we have
|
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle y'={\frac {dy}{dx}}={\frac {{\frac {dr}{d\theta }}\sin \theta +r\cos \theta }{{\frac {dr}{d\theta }}\cos \theta -r\sin \theta }}}
.
|
Since ,
|
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {dr}{d\theta }}=\cos \theta }
.
|
| Hence, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle y'={\frac {\cos \theta \sin \theta +(1+\sin \theta )\cos \theta }{\cos ^{2}\theta -(1+\sin \theta )\sin \theta }}}
|
| Step 2:
|
Thus, we have
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {y'}&=&\displaystyle {\frac {2\cos \theta \sin \theta +\cos \theta }{\cos ^{2}\theta -\sin ^{2}\theta -\sin \theta }}\\&&\\&=&\displaystyle {\frac {\sin(2\theta )+\cos \theta }{\cos(2\theta )-\sin \theta }}\\\end{array}}}
|
(c)
| Step 1:
|
| We have Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {d^{2}y}{dx^{2}}}={\frac {\frac {dy'}{d\theta }}{{\frac {dr}{d\theta }}\cos \theta -r\sin \theta }}}
.
|
So, first we need to find .
|
| We have
|
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\frac{dy'}{d\theta}} & = & \displaystyle{\frac{d}{d\theta}\bigg(\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}\bigg)}\\ &&\\ & = & \displaystyle{\frac{(\cos(2\theta)-\sin\theta)(2\cos(2\theta)-\sin\theta)-(\sin(2\theta)+\cos\theta)(-2\sin(2\theta)-\cos\theta)}{(\cos(2\theta)-\sin\theta)^2}}\\ &&\\ & = & \displaystyle{\frac{2\cos^2(2\theta)+2\sin^2(2\theta)-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta+\sin^2\theta+\cos^2\theta}{(\cos(2\theta)-\sin\theta)^2}}\\ &&\\ & = & \displaystyle{\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^2}}\\ \end{array}}
|
| since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin^2\theta+\cos^2\theta=1}
and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\cos^2(2\theta)+2\sin^2(2\theta)=2}
.
|
| Step 2:
|
| Now, using the resulting formula for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy'}{d\theta}}
, we get
|
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d^2y}{dx^2}=\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}}
.
|
|
|
| Final Answer:
|
| (a) See Step 1 above for the graph.
|
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}}
|
| (c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}}
|
Return to Sample Exam