009C Sample Final 1, Problem 7

From Grad Wiki
Revision as of 13:21, 24 February 2016 by Kayla Murray (talk | contribs)
Jump to navigation Jump to search

A curve is given in polar coordinates by

a) Sketch the curve.

b) Compute .

c) Compute .

Foundations:  
How do you calculate for a polar curve ?
Since , we have
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle y'={\frac {dy}{dx}}={\frac {{\frac {dr}{d\theta }}\sin \theta +r\cos \theta }{{\frac {dr}{d\theta }}\cos \theta -r\sin \theta }}} .

Solution:

(a)

Step 1:  
Insert sketch of graph


(b)

Step 1:  
First, recall we have
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle y'={\frac {dy}{dx}}={\frac {{\frac {dr}{d\theta }}\sin \theta +r\cos \theta }{{\frac {dr}{d\theta }}\cos \theta -r\sin \theta }}} .
Since ,
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {dr}{d\theta }}=\cos \theta } .
Hence, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle y'={\frac {\cos \theta \sin \theta +(1+\sin \theta )\cos \theta }{\cos ^{2}\theta -(1+\sin \theta )\sin \theta }}}
Step 2:  
Thus, we have
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {y'}&=&\displaystyle {\frac {2\cos \theta \sin \theta +\cos \theta }{\cos ^{2}\theta -\sin ^{2}\theta -\sin \theta }}\\&&\\&=&\displaystyle {\frac {\sin(2\theta )+\cos \theta }{\cos(2\theta )-\sin \theta }}\\\end{array}}}

(c)

Step 1:  
We have Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {d^{2}y}{dx^{2}}}={\frac {\frac {dy'}{d\theta }}{{\frac {dr}{d\theta }}\cos \theta -r\sin \theta }}} .
So, first we need to find .
We have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\frac{dy'}{d\theta}} & = & \displaystyle{\frac{d}{d\theta}\bigg(\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}\bigg)}\\ &&\\ & = & \displaystyle{\frac{(\cos(2\theta)-\sin\theta)(2\cos(2\theta)-\sin\theta)-(\sin(2\theta)+\cos\theta)(-2\sin(2\theta)-\cos\theta)}{(\cos(2\theta)-\sin\theta)^2}}\\ &&\\ & = & \displaystyle{\frac{2\cos^2(2\theta)+2\sin^2(2\theta)-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta+\sin^2\theta+\cos^2\theta}{(\cos(2\theta)-\sin\theta)^2}}\\ &&\\ & = & \displaystyle{\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^2}}\\ \end{array}}
since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin^2\theta+\cos^2\theta=1} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\cos^2(2\theta)+2\sin^2(2\theta)=2} .
Step 2:  
Now, using the resulting formula for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy'}{d\theta}} , we get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d^2y}{dx^2}=\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}} .
Final Answer:  
(a) See Step 1 above for the graph.
(b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}}
(c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}}

Return to Sample Exam