Series - Tests for Convergence/Divergence

From Grad Wiki
Jump to navigation Jump to search

This page is meant to provide guidelines for actually applying series convergence tests. Although no examples are given here, the requirements for each test are provided.

Important Series

There are two series that are important to know for a variety of reasons. In particular, they are useful for comparison tests.

Geometric series. These are series with a common ratio Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} between adjacent terms which are usually written

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=0}^{\infty}a_{0}r^{k}.}

These are convergent if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |r|<1} , and divergent if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |r|\geq1} . If it is convergent, we can find the sum by the formula

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S=\frac{a_{0}}{1-r},}

where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{0}} is the first term in the series (if the index starts at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k=2} or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k=6} , then "Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{0}} " is actually the first term Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{2}} or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{6}} , respectively).


p-series. These are series of the form

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{\infty}\frac{1}{k^{p}}.}

If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p>1} , then the series is convergent. On the other hand, if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p\leq1} , the p-series is divergent.

The Divergence Test

If then the series/sum diverges.


Note: The opposite result doesn't allow you to conclude a series converges. If  , it merely indicates the series might converge, and you still need to confirm it through another test.

In particular, the sequence converges to zero, but the sum  , our harmonic series, diverges.

The Integral Test

Suppose the function is continuous, positive and decreasing on some interval with , and let . Then the series is convergent if and only if and

is convergent (not infinite).

Note: This test, like many of them, has a few specific requirements. In order to use it on a test, you need to state/show:

  • For all for some , the function is positive. (Most of the time, is just my starting index ).
  • For all , the function is decreasing.
  • The integral is convergent (or divergent, if you're proving divergence).

Then, you can say, "By the Integral Test, the series is convergent (or divergent)."

I wrote this with instead of for a lower bound to indicate you only need to show the series and function are "eventually" decreasing, positive, etc. In other words, we don't care what happens at the beginning (or head) of a series - only at the end (or tail).

The Comparison Test

Suppose is a series with positive terms, and is a series with eventually positive terms. Then

  • If for all for some greater than or equal to our starting index, and is convergent, then is convergent.
  • If for all and is divergent, then is divergent.


Note: Requirements for this test include showing (or at least stating):

  • For all for some greater than or equal to our starting index, is positive. (Most of the time, is just the starting index.)
  • For all , for convergence, or for divergence.
  • (This is important) State why Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{\infty} b_k} is convergent, such as a p-series with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p>1} , or a geometric series with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |r|<1} . Obviously, you would need to state why it is divergent if you're showing it's divergent.

Then, you can say, "By the Comparison Test, the series is convergent (or divergent)."

The Limit Comparison Test

Suppose Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{\infty} a_{k}} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{\infty} b_{k}} are series with positive terms. If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{k\rightarrow\infty}\frac{a_{k}}{b_{k}}=c} where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0<c<\infty} , then either both series converge, or both series diverge.

Additionally, if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c=0} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{\infty} b_{k}} converges, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{\infty} a_{k}} also converges. Similarly, if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c=\infty}   and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{\infty} b_{k}} diverges, then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{\infty} a_{k}} also diverges.

Note: First of all, let's mention the fundamental idea here. If some series converges, then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{\infty} cb_{k}} converges where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c\neq\pm\infty } is a constant. This test shows that one series eventually is just like the other one multiplied by a constant, and for that reason it will also converge/diverge if the one compared to converges/diverges. To use it, you need to state/show:

  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{k} } is always positive (really, non-negative).
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\displaystyle \lim_{k\rightarrow\infty}\frac{a_{k}}{b_{k}}}=c } .
  • State why Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{\infty} b_{k} } is convergent, such as a p-series with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p>1 } , or a geometric series with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |r|<1 } . Obviously, you would need to state why it is divergent if you're showing it's divergent.

Then, you can say, "By the Limit Comparison Test, the series is convergent (or divergent)."

Like the Comparison Test and the Integral Test, it's fine if the first terms are kind of "wrong" - negative, for example - as long as they eventually wind up (for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k>c} for a particular Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c}  ) meeting the requirements.

The Alternating Series Test

If a series Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{\infty} a_{k}} is

  • Alternating in sign, and
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{k\rightarrow 0}|a_{k}|=0,}

then the series is convergent.

Note: This is a fairly straightfoward test. You only need to do two things:

  • Mention the series is alternating (even though it's usually obvious).
  • Show the limit converges to zero.

Then, you can say, "By the Alternating Series Test, the series is convergent."

As an additional detail, if it fails to converge to zero, then you would say it diverges by the Divergence Test, not the Alternating Series Test.

The Ratio Test

Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{\infty} a_{k}} be a series. Then:

  • If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{k\rightarrow\infty}\left|\frac{a_{k+1}}{a_{k}}\right|=L<1} , the series is absolutely convergent (and therefore convergent).
  • If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{k\rightarrow\infty}\left|\frac{a_{k+1}}{a_{k}}\right|=L>1} or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{k\rightarrow\infty}\left|\frac{a_{k+1}}{a_{k}}\right|=L=\infty} , the series is divergent.
  • If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{k\rightarrow\infty}\left|\frac{a_{k+1}}{a_{k}}\right|=L=1} , the Ratio Test is inconclusive.

Note: Both this and the Root Test have the least requirements. The Ratio Test does require that such a limit exists, so a series like

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0+1+0+\frac{1}{4}+0+\frac{1}{9}+\cdots}

could not be assessed as written with the Ratio Test, as division by zero is undefined. You might have to argue it's the same sum as

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1+\frac{1}{4}+\frac{1}{9}+\cdots,}

and you could then apply the Ratio Test.

The Root Test

Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \displaystyle\sum_{k=0}^{\infty} a_{k}} be a series. Then:

  • If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\displaystyle \lim_{k\rightarrow\infty}\sqrt[k]{|a_{k}|}}=L<1,} the series is absolutely convergent (and therefore convergent).
  • If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\displaystyle \lim_{k\rightarrow\infty}\sqrt[k]{|a_{k}|}}=L>1} or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\displaystyle\lim_{k\rightarrow\infty}\sqrt[k]{|a_{k}|}}=L=\infty,}

the series is divergent.

  • If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\displaystyle \lim_{k\rightarrow\infty}\sqrt[k]{|a_{k}|}}=L=1} , the Root Test is inconclusive.