031 Review Part 3, Problem 1

From Grad Wiki
Revision as of 16:09, 13 October 2017 by Kayla Murray (talk | contribs)
Jump to navigation Jump to search

(a) Is the matrix  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A= \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}}   diagonalizable? If so, explain why and diagonalize it. If not, explain why not.

(b) Is the matrix  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A= \begin{bmatrix} 2 & 0 & -2 \\ 1 & 3 & 2 \\ 0 & 0 & 3 \end{bmatrix}}   diagonalizable? If so, explain why and diagonalize it. If not, explain why not.


Foundations:  
Recall:
1. The eigenvalues of a triangular matrix are the entries on the diagonal.
2. By the Diagonalization Theorem, an    matrix    is diagonalizable
if and only if    has    linearly independent eigenvectors.


Solution:

(a)

Step 1:  
To answer this question, we examine the eigenvalues and eigenvectors of  
Since    is a triangular matrix, the eigenvalues are the entries on the diagonal.
Hence, the only eigenvalue of    is  
Step 2:  
Now, we find a basis for the eigenspace corresponding to    by solving  
We have
       
Solving this system, we see    is a free variable and  
Therefore, a basis for this eigenspace is
Step 3:  
Now, we know that    only has one linearly independent eigenvector.
By the Diagonalization Theorem,    must have    linearly independent eigenvectors to be diagonalizable.
Hence,    is not diagonalizable.

(b)

Step 1:  
First, we find the eigenvalues of    by solving  
Using cofactor expansion, we have

       

Therefore, setting
 
we find that the eigenvalues of    are    and  
Step 2:  
Now, we find a basis for each eigenspace by solving    for each eigenvalue  
For the eigenvalue    we have

       

We see that    is a free variable. So, a basis for the eigenspace corresponding to    is
Step 3:  
For the eigenvalue    we have

       

We see that    and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_3}   are free variables. So, a basis for the eigenspace corresponding to  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3}   is
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigg\{\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix},\begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}\bigg\}.}
Step 4:  
Since  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A}   has  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3}   linearly independent eigenvectors,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A}   is diagonalizable by the Diagonalization Theorem.
Using the Diagonalization Theorem, we can diagonalize  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A}   using the information from the steps above.
So, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D=\begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix},P=\begin{bmatrix} -1 & 0 & -2 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.}


Final Answer:  
   (a)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A}   is not diagonalizable.
   (b)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A}   is diagonalizable and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D=\begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix},P=\begin{bmatrix} -1 & 0 & -2 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.}

Return to Sample Exam