031 Review Part 3, Problem 1
(a) Is the matrix Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A= \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}} diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
(b) Is the matrix Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A= \begin{bmatrix} 2 & 0 & -2 \\ 1 & 3 & 2 \\ 0 & 0 & 3 \end{bmatrix}} diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
| Foundations: |
|---|
| Recall: |
| 1. The eigenvalues of a triangular matrix are the entries on the diagonal. |
| 2. By the Diagonalization Theorem, an matrix is diagonalizable |
|
Solution:
(a)
| Step 1: |
|---|
| To answer this question, we examine the eigenvalues and eigenvectors of |
| Since is a triangular matrix, the eigenvalues are the entries on the diagonal. |
| Hence, the only eigenvalue of is |
| Step 2: |
|---|
| Now, we find a basis for the eigenspace corresponding to by solving |
| We have |
| Solving this system, we see is a free variable and |
| Therefore, a basis for this eigenspace is |
|
|
| Step 3: |
|---|
| Now, we know that only has one linearly independent eigenvector. |
| By the Diagonalization Theorem, must have linearly independent eigenvectors to be diagonalizable. |
| Hence, is not diagonalizable. |
(b)
| Step 1: |
|---|
| First, we find the eigenvalues of by solving |
| Using cofactor expansion, we have |
|
|
| Therefore, setting |
|
|
| we find that the eigenvalues of are and |
| Step 2: |
|---|
| Now, we find a basis for each eigenspace by solving for each eigenvalue |
| For the eigenvalue we have |
|
|
| We see that is a free variable. So, a basis for the eigenspace corresponding to is |
|
|
| Step 3: |
|---|
| For the eigenvalue we have |
|
|
| We see that and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_3} are free variables. So, a basis for the eigenspace corresponding to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3} is |
|
| Step 4: |
|---|
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} has Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3} linearly independent eigenvectors, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is diagonalizable by the Diagonalization Theorem. |
| Using the Diagonalization Theorem, we can diagonalize Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} using the information from the steps above. |
| So, we have |
|
| Final Answer: |
|---|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is not diagonalizable. |
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is diagonalizable and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D=\begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix},P=\begin{bmatrix} -1 & 0 & -2 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.} |