031 Review Part 2, Problem 7
(a) Let be a transformation given by
Determine whether is a linear transformation. Explain.
(b) Let and Find and
| Foundations: |
|---|
| A map is a linear transformation if |
|
|
|
|
|
|
Solution:
(a)
| Step 1: |
|---|
| We claim that is not a linear transformation. |
| Consider the vectors and |
| Then, we have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{T\bigg(\begin{bmatrix} 1\\ 0 \end{bmatrix}+\begin{bmatrix} 0\\ 1 \end{bmatrix}\bigg)} & = & \displaystyle{T\bigg(\begin{bmatrix} 1\\ 1 \end{bmatrix}\bigg)}\\ &&\\ & = & \displaystyle{\begin{bmatrix} 0\\ 2 \end{bmatrix}.} \end{array}} |
| Step 2: |
|---|
| On the other hand, notice |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{T\bigg(\begin{bmatrix} 1\\ 0 \end{bmatrix}+\begin{bmatrix} 0\\ 1 \end{bmatrix}\bigg)} & = & \displaystyle{T\bigg(\begin{bmatrix} 1\\ 1 \end{bmatrix}\bigg)}\\ &&\\ & = & \displaystyle{\begin{bmatrix} 0\\ 2 \end{bmatrix}.} \end{array}} |
(b)
| Step 1: |
|---|
| Step 2: |
|---|
| Final Answer: |
|---|
| (a) |
| (b) |