031 Review Part 2, Problem 1
Revision as of 10:34, 10 October 2017 by Kayla Murray (talk | contribs)
Consider the matrix and assume that it is row equivalent to the matrix
(a) List rank and
(b) Find bases for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{Col }A} and Find an example of a nonzero vector that belongs to as well as an example of a nonzero vector that belongs to
Foundations: |
---|
1. For a matrix the rank of is |
|
2. is the vector space spanned by the columns of |
3. is the vector space containing all solutions to |
Solution:
(a)
Step 1: |
---|
From the matrix we see that contains two pivots. |
Therefore, |
|
Step 2: |
---|
By the Rank Theorem, we have |
|
Hence, |
(b)
Step 1: |
---|
From the matrix we see that contains pivots in Column 1 and 2. |
So, to obtain a basis for we select the corresponding columns from |
Hence, a basis for is |
|
Step 2: |
---|
Final Answer: |
---|
(a) |
(b) |