031 Review Part 1, Problem 2
Revision as of 14:47, 9 October 2017 by Kayla Murray (talk | contribs)
True or false: If a matrix is diagonalizable, then the matrix must be diagonalizable as well.
Solution: |
---|
Let |
First, notice that |
|
which is diagonalizable. |
Since is a diagonal matrix, the eigenvalues of are the entries on the diagonal. |
Therefore, the only eigenvalue of is Additionally, there is only one linearly independent eigenvector. |
Hence, is not diagonalizable and the statement is false. |
Final Answer: |
---|
FALSE |