009A Sample Final 2, Problem 8

From Grad Wiki
Revision as of 15:39, 20 May 2017 by Kayla Murray (talk | contribs)
Jump to navigation Jump to search

Compute

(a)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow \infty} \frac{x^{-1}+x}{1+\sqrt{1+x}}}

(b)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 0} \frac{\sin x}{\cos x-1}}

(c)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 1} \frac{x^3-1}{x^{10}-1}}

Foundations:  
L'Hôpital's Rule, Part 1

        Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow c}f(x)=0}   and    where    and    are differentiable functions

       on an open interval    containing    and    on    except possibly at   
       Then,  


Solution:

(a)

Step 1:  
First, we have
        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow \infty }{\frac {x^{-1}+x}{1+{\sqrt {1+x}}}}}&=&\displaystyle {\lim _{x\rightarrow \infty }{\frac {{\frac {1}{x}}+x}{1+{\sqrt {1+x}}}}}\\&&\\&=&\displaystyle {\lim _{x\rightarrow \infty }{\frac {{\frac {1}{x}}+x}{1+{\sqrt {1+x}}}}{\frac {{\big (}{\frac {1}{\sqrt {x}}}{\big )}}{{\big (}{\frac {1}{\sqrt {x}}}{\big )}}}}\\&&\\&=&\displaystyle {\lim _{x\rightarrow \infty }{\frac {{\frac {1}{x^{3/2}}}+{\sqrt {x}}}{{\frac {1}{\sqrt {x}}}+{\sqrt {{\frac {1}{x}}+1}}}}.}\end{array}}}
Step 2:  
Now, we have
        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow \infty }{\frac {x^{-1}+x}{1+{\sqrt {1+x}}}}}&=&\displaystyle {\lim _{x\rightarrow \infty }{\frac {{\frac {1}{x^{3/2}}}+{\sqrt {x}}}{{\frac {1}{\sqrt {x}}}+{\sqrt {{\frac {1}{x}}+1}}}}}\\&&\\&=&\displaystyle {\frac {\lim _{x\rightarrow \infty }{\big (}{\frac {1}{x^{3/2}}}+{\sqrt {x}}{\big )}}{\lim _{x\rightarrow \infty }{\big (}{\frac {1}{\sqrt {x}}}+{\sqrt {{\frac {1}{x}}+1}}{\big )}}}\\&&\\&=&\displaystyle {\frac {\lim _{x\rightarrow \infty }{\frac {1}{x^{3/2}}}+\lim _{x\rightarrow \infty }{\sqrt {x}}}{\lim _{x\rightarrow \infty }{\frac {1}{\sqrt {x}}}+\lim _{x\rightarrow \infty }{\sqrt {{\frac {1}{x}}+1}}}}\\&&\\&=&\displaystyle {\frac {0+\lim _{x\rightarrow \infty }{\sqrt {x}}}{0+1}}\\&&\\&=&\displaystyle {\infty .}\end{array}}}

(b)

Step 1:  
First, we write
       
Step 2:  
Now, we have
       
and
       
Therefore,
       

(c)

Step 1:  
We proceed using L'Hôpital's Rule. So, we have

       

Step 2:  
Now, we have
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow 1} \frac{x^3-1}{x^{10}-1}} & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow 1}\frac{3x^2}{10x^9}}\\ &&\\ & = & \displaystyle{\frac{3(1)^2}{10(1)^9}}\\ &&\\ & = & \displaystyle{\frac{3}{10}.} \end{array}}


Final Answer:  
   (a)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \infty}
   (b)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{DNE}}
   (c)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{10}}

Return to Sample Exam