009A Sample Final 2, Problem 8
Compute
(a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow \infty} \frac{x^{-1}+x}{1+\sqrt{1+x}}}
(b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 0} \frac{\sin x}{\cos x-1}}
(c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 1} \frac{x^3-1}{x^{10}-1}}
| Foundations: |
|---|
| L'Hôpital's Rule, Part 1 |
|
Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow c}f(x)=0} and where and are differentiable functions |
| on an open interval containing and on except possibly at |
| Then, |
Solution:
(a)
| Step 1: |
|---|
| First, we have |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow \infty }{\frac {x^{-1}+x}{1+{\sqrt {1+x}}}}}&=&\displaystyle {\lim _{x\rightarrow \infty }{\frac {{\frac {1}{x}}+x}{1+{\sqrt {1+x}}}}}\\&&\\&=&\displaystyle {\lim _{x\rightarrow \infty }{\frac {{\frac {1}{x}}+x}{1+{\sqrt {1+x}}}}{\frac {{\big (}{\frac {1}{\sqrt {x}}}{\big )}}{{\big (}{\frac {1}{\sqrt {x}}}{\big )}}}}\\&&\\&=&\displaystyle {\lim _{x\rightarrow \infty }{\frac {{\frac {1}{x^{3/2}}}+{\sqrt {x}}}{{\frac {1}{\sqrt {x}}}+{\sqrt {{\frac {1}{x}}+1}}}}.}\end{array}}} |
| Step 2: |
|---|
| Now, we have |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow \infty }{\frac {x^{-1}+x}{1+{\sqrt {1+x}}}}}&=&\displaystyle {\lim _{x\rightarrow \infty }{\frac {{\frac {1}{x^{3/2}}}+{\sqrt {x}}}{{\frac {1}{\sqrt {x}}}+{\sqrt {{\frac {1}{x}}+1}}}}}\\&&\\&=&\displaystyle {\frac {\lim _{x\rightarrow \infty }{\big (}{\frac {1}{x^{3/2}}}+{\sqrt {x}}{\big )}}{\lim _{x\rightarrow \infty }{\big (}{\frac {1}{\sqrt {x}}}+{\sqrt {{\frac {1}{x}}+1}}{\big )}}}\\&&\\&=&\displaystyle {\frac {\lim _{x\rightarrow \infty }{\frac {1}{x^{3/2}}}+\lim _{x\rightarrow \infty }{\sqrt {x}}}{\lim _{x\rightarrow \infty }{\frac {1}{\sqrt {x}}}+\lim _{x\rightarrow \infty }{\sqrt {{\frac {1}{x}}+1}}}}\\&&\\&=&\displaystyle {\frac {0+\lim _{x\rightarrow \infty }{\sqrt {x}}}{0+1}}\\&&\\&=&\displaystyle {\infty .}\end{array}}} |
(b)
| Step 1: |
|---|
| First, we write |
| Step 2: |
|---|
| Now, we have |
| and |
| Therefore, |
(c)
| Step 1: |
|---|
| We proceed using L'Hôpital's Rule. So, we have |
|
|
| Step 2: |
|---|
| Now, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow 1} \frac{x^3-1}{x^{10}-1}} & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow 1}\frac{3x^2}{10x^9}}\\ &&\\ & = & \displaystyle{\frac{3(1)^2}{10(1)^9}}\\ &&\\ & = & \displaystyle{\frac{3}{10}.} \end{array}} |
| Final Answer: |
|---|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \infty} |
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{DNE}} |
| (c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{10}} |