009A Sample Final 2, Problem 10

From Grad Wiki
Revision as of 19:13, 7 March 2017 by Kayla Murray (talk | contribs)
Jump to navigation Jump to search

Let

(a) Find all local maximum and local minimum values of    find all intervals where    is increasing and all intervals where    is decreasing.

(b) Find all inflection points of the function    find all intervals where the function    is concave upward and all intervals where    is concave downward.

(c) Find all horizontal asymptotes of the graph  

(d) Sketch the graph of  

Foundations:  
1.   is increasing when    and    is decreasing when  
2. The First Derivative Test tells us when we have a local maximum or local minimum.
3.   is concave up when    and    is concave down when  
4. Inflection points occur when  


Solution:

(a)

Step 1:  
We start by taking the derivative of   
Using the Quotient Rule, we have
        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {f'(x)}&=&\displaystyle {\frac {(x^{2}+1)(4x)'-(4x)(x^{2}+1)'}{(x^{2}+1)^{2}}}\\&&\\&=&\displaystyle {\frac {(x^{2}+1)(4)-(4x)(2x)}{(x^{2}+1)^{2}}}\\&&\\&=&\displaystyle {{\frac {-4(x^{2}-1)}{(x^{2}+1)^{2}}}.}\end{array}}}
Now, we set   
So, we have  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle -4(x^{2}-1)=0.}
Hence, we have    and  
So, these values of    break up the number line into 3 intervals:
       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle (-\infty ,-1),(-1,1),(1,\infty ).}
Step 2:  
To check whether the function is increasing or decreasing in these intervals, we use testpoints.
For  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x=-2,~f'(x)={\frac {-12}{25}}<0.}
For  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x=0,~f'(x)=4>0.}
For  
Thus,    is increasing on    and decreasing on  
Step 3:  
Using the First Derivative Test,    has a local minimum at    and a local maximum at   
Thus, the local maximum and local minimum values of    are
       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f(1)=2,~f(-1)=-2.}

(b)

Step 1:  
To find the intervals when the function is concave up or concave down, we need to find  
Using the Quotient Rule and Chain Rule, we have
        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {f''(x)}&=&\displaystyle {\frac {(x^{2}+1)^{2}(-4(x^{2}-1))'+4(x^{2}-1)((x^{2}+1)^{2})'}{((x^{2}+1)^{2})^{2}}}\\&&\\&=&\displaystyle {\frac {(x^{2}+1)^{2}(-8x)+4(x^{2}-1)2(x^{2}+1)(x^{2}+1)'}{(x^{2}+1)^{4}}}\\&&\\&=&\displaystyle {\frac {(x^{2}+1)^{2}(-8x)+4(x^{2}-1)2(x^{2}+1)(2x)}{(x^{2}+1)^{4}}}\\&&\\&=&\displaystyle {\frac {(x^{2}+1)(-8x)+16(x^{2}-1)x}{(x^{2}+1)^{3}}}\\&&\\&=&\displaystyle {\frac {8x^{3}-24x}{(x^{2}+1)^{3}}}\\&&\\&=&\displaystyle {{\frac {8x(x^{2}-3)}{(x^{2}+1)^{3}}}.}\end{array}}}
We set  
So, we have  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 8x(x^{2}-3)=0.}  
Hence,
       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x=0,~x=-{\sqrt {3}},~x={\sqrt {3}}.}
This value breaks up the number line into four intervals:
       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle (-\infty ,-{\sqrt {3}}),(-{\sqrt {3}},0)(0,{\sqrt {3}}),({\sqrt {3}},\infty ).}
Step 2:  
Again, we use test points in these four intervals.
For  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x=-2,}   we have  
For    we have  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f''(x)=2>0.}
For    we have  
For  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x=2,}   we have  
Thus,    is concave up on    and concave down on  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle (-\infty ,-{\sqrt {3}})\cup (0,{\sqrt {3}}).}
Step 3:  
The inflection points occur at
       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x=0,~x=-{\sqrt {3}},~x={\sqrt {3}}.}
Plugging these into   we get the inflection points
       

(c)

Step 1:  
First, we note that the degree of the numerator is    and
the degree of the denominator is   
Step 2:  
Since the degree of the denominator is greater than the degree of the numerator,
  has a horizontal asymptote
       
(d):  
Insert sketch


Final Answer:  
   (a)      is increasing on    and decreasing on  
           The local maximum value of    is    and the local minimum value of    is   
   (b)      is concave up on    and concave down on  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle (-\infty ,-{\sqrt {3}})\cup (0,{\sqrt {3}}).}
            The inflection points are  
   (c)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=0}
   (d)    See above

Return to Sample Exam