Compute
(a) lim x → ∞ x − 1 + x 1 + 1 + x {\displaystyle \lim _{x\rightarrow \infty }{\frac {x^{-1}+x}{1+{\sqrt {1+x}}}}}
(b) lim x → 0 sin x cos x − 1 {\displaystyle \lim _{x\rightarrow 0}{\frac {\sin x}{\cos x-1}}}
(c) lim x → 1 x 3 − 1 x 10 − 1 {\displaystyle \lim _{x\rightarrow 1}{\frac {x^{3}-1}{x^{10}-1}}}
(a) lim x → − 3 x 3 − 9 x 6 + 2 x {\displaystyle \lim _{x\rightarrow -3}{\frac {x^{3}-9x}{6+2x}}}
(b) lim x → 0 + sin ( 2 x ) x 2 {\displaystyle \lim _{x\rightarrow 0^{+}}{\frac {\sin(2x)}{x^{2}}}}
(c) lim x → − ∞ 3 x 4 x 2 + x + 5 {\displaystyle \lim _{x\rightarrow -\infty }{\frac {3x}{\sqrt {4x^{2}+x+5}}}}
Solution:
(a)
(b)
(c)
Return to Sample Exam