009B Sample Final 2, Problem 7

From Grad Wiki
Revision as of 13:11, 3 March 2017 by Kayla Murray (talk | contribs)
Jump to navigation Jump to search

Evaluate the following integrals or show that they are divergent:

(a)  

(b)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^1 \frac{3\ln x}{\sqrt{x}}~dx}

Foundations:  
1. How could you write   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^{\infty} f(x)~dx} so that you can integrate?

        You can write   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^{\infty} f(x)~dx=\lim_{a\rightarrow\infty} \int_0^a f(x)~dx.}

2. How could you write   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{0}^1 \frac{1}{x}~dx?}

        The problem is that  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{x}}   is not continuous at  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0.}

        So, you can write  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{0}^1 \frac{1}{x}~dx=\lim_{a\rightarrow 0} \int_{a}^1 \frac{1}{x}~dx.}


Solution:

(a)

Step 1:  
First, we write
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_1^\infty \frac{\ln x}{x^4}~dx=\lim_{a\rightarrow \infty} \int_1^a \frac{\ln x}{x^4}~dx.}
Now, we use integration by parts.
Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\ln x}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=\frac{1}{x^4}dx.}
Then,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=\frac{1}{x}dx}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=\frac{1}{-3x^3}.}
Using integration by parts, we get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_1^\infty \frac{\ln x}{x^4}~dx} & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{\ln x}{-3x^3}\bigg|_1^a+\int_1^a \frac{1}{3x^4}~dx}\\ &&\\ & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{\ln x}{-3x^3}-\frac{1}{9x^3}\bigg|_1^a.} \end{array}}
Step 2:  
Now, using L'Hopital's Rule, we get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_1^\infty \frac{\ln x}{x^4}~dx} & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{\ln a}{-3a^3}-\frac{1}{9a^3}-\bigg(\frac{\ln 1}{-3}-\frac{1}{9}\bigg)}\\ &&\\ & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{\ln(a)}{-3a^3}+0+0+\frac{1}{9}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln(x)}{-3x^3}+\frac{1}{9}}\\ &&\\ & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{1}{x}}{-9x^2}+\frac{1}{9}}\\ &&\\ & = & \displaystyle{\frac{1}{9}.} \end{array}}

(b)

Step 1:  
Step 2:  


Final Answer:  
   (a)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{9}}
(b)

Return to Sample Exam