009B Sample Final 2, Problem 7

From Grad Wiki
Revision as of 12:56, 3 March 2017 by Kayla Murray (talk | contribs)
Jump to navigation Jump to search

Evaluate the following integrals or show that they are divergent:

(a)  

(b)  

Foundations:  
1. How could you write   so that you can integrate?

        You can write   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^{\infty} f(x)~dx=\lim_{a\rightarrow\infty} \int_0^a f(x)~dx.}

2. How could you write   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{0}^1 \frac{1}{x}~dx?}

        The problem is that  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{x}}   is not continuous at  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0.}

        So, you can write  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{0}^1 \frac{1}{x}~dx=\lim_{a\rightarrow 0} \int_{a}^1 \frac{1}{x}~dx.}


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  


Final Answer:  
(a)
(b)

Return to Sample Exam