009A Sample Midterm 1, Problem 4

From Grad Wiki
Revision as of 15:55, 18 February 2017 by Kayla Murray (talk | contribs)
Jump to navigation Jump to search

Find the derivatives of the following functions. Do not simplify.

(a)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\sqrt{x}(x^2+2)}

(b)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)=\frac{x+3}{x^{\frac{3}{2}}+2}} where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x>0}

(c)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(x)=\frac{e^{-5x^3}}{\sqrt{x^2+1}}}


Foundations:  
1. Product Rule
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}(f(x)g(x))=f(x)g'(x)+f'(x)g(x)}
2. Quotient Rule
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\bigg(\frac{f(x)}{g(x)}\bigg)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}}
3. Chain Rule
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}(f(g(x)))=f'(g(x))g'(x)}


Solution:

(a)

Step 1:  
Using the Product Rule, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=(\sqrt{x})'(x^2+2)+\sqrt{x}(x^2+2)'.}
Step 2:  
Now, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{(\sqrt{x})'(x^2+2)+\sqrt{x}(x^2+2)'}\\ &&\\ & = & \displaystyle{\bigg(\frac{1}{2}x^{-\frac{1}{2}}\bigg)(x^2+2)+\sqrt{x}(2x).} \end{array}}

(b)

Step 1:  
Using the Quotient Rule, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g'(x)=\frac{(x^{\frac{3}{2}}+2)(x+3)'-(x+3)(x^{\frac{3}{2}}+2)'}{(x^{\frac{3}{2}}+2)^2}.}
Step 2:  
Now, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{g'(x)} & = & \displaystyle{\frac{(x^{\frac{3}{2}}+2)(x+3)'-(x+3)(x^{\frac{3}{2}}+2)'}{(x^{\frac{3}{2}}+2)^2}}\\ &&\\ & = & \displaystyle{\frac{(x^{\frac{3}{2}}+2)(1)-(x+3)(\frac{3}{2}x^{\frac{1}{2}})}{(x^{\frac{3}{2}}+2)^2}.} \end{array}}

(c)

Step 1:  
Using the Quotient Rule, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h'(x)=\frac{\sqrt{x^2+1}(e^{-5x^3})'-e^{-5x^3}(\sqrt{x^2+1})'}{(\sqrt{x^2+1})^2}.}
Step 2:  
Now, using the Chain Rule, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{h'(x)} & = & \displaystyle{\frac{\sqrt{x^2+1}(e^{-5x^3})'-e^{-5x^3}(\sqrt{x^2+1})'}{(\sqrt{x^2+1})^2}}\\ &&\\ & = & \displaystyle{\frac{\sqrt{x^2+1}(e^{-5x^3})(-5x^3)'-e^{-5x^3}\frac{1}{2}(x^2+1)^{\frac{-1}{2}}(x^2+1)'}{(\sqrt{x^2+1})^2}}\\ &&\\ & = & \displaystyle{\frac{\sqrt{x^2+1}(e^{-5x^3})(-15x^2)-e^{-5x^3}\frac{1}{2}(x^2+1)^{\frac{-1}{2}}(2x)}{(\sqrt{x^2+1})^2}.} \end{array}}


Final Answer:  
    (a)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigg(\frac{1}{2}x^{-\frac{1}{2}}\bigg)(x^2+2)+\sqrt{x}(2x)}
    (b)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(x^{\frac{3}{2}}+2)(1)-(x+3)(\frac{3}{2}x^{\frac{1}{2}})}{(x^{\frac{3}{2}}+2)^2}}
    (c)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\sqrt{x^2+1}(e^{-5x^3})(-15x^2)-e^{-5x^3}\frac{1}{2}(x^2+1)^{\frac{-1}{2}}(2x)}{(\sqrt{x^2+1})^2}}

Return to Sample Exam