009A Sample Midterm 2, Problem 5

From Grad Wiki
Revision as of 15:21, 18 February 2017 by Kayla Murray (talk | contribs)
Jump to navigation Jump to search

Find the derivatives of the following functions. Do not simplify.

(a)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\tan^3(7x^2+5) }

(b)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)=\sin(\cos(e^x)) }

(c)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(x)=\frac{(5x^2+7x)^3}{\ln(x^2+1)} }


Foundations:  
1. Chain Rule
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}(f(g(x)))=f'(g(x))g'(x)}
2. Trig Derivatives
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}(\sin x)=\cos x,\quad\frac{d}{dx}(\cos x)=-\sin x}
3. Quotient Rule
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\bigg(\frac{f(x)}{g(x)}\bigg)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}}
4. Derivative of natural logarithm
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}(\ln x)=\frac{1}{x}}


Solution:

(a)

Step 1:  
First, we use the Chain Rule to get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=3\tan^2(7x^2+5)(\tan(7x^2+5))'.}
Step 2:  
Now, we use the Chain Rule again to get

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{3\tan^2(7x^2+5)(\tan(7x^2+5))'}\\ &&\\ & = & \displaystyle{3\tan^2(7x^2+5)\sec^2(7x^2+5)(7x^2+5)'}\\ &&\\ & = & \displaystyle{3\tan^2(7x^2+5)\sec^2(7x^2+5)(14x).} \end{array}}

(b)

Step 1:  
First, we use the Chain Rule to get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g'(x)=\cos(\cos(e^x))(\cos(e^x))'.}
Step 2:  
Now, we use the Chain Rule again to get

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{g'(x)} & = & \displaystyle{\cos(\cos(e^x))(\cos(e^x))'}\\ &&\\ & = & \displaystyle{\cos(\cos(e^x))(-\sin(e^x))(e^x)'}\\ &&\\ & = & \displaystyle{\cos(\cos(e^x))(-\sin(e^x))(e^x).} \end{array}}

(c)

Step 1:  
First, we use the Quotient Rule to get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h'(x)=\frac{\ln(x^2+1)((5x^2+7x)^2)'-(5x^2+7x)^2(\ln(x^2+1))'}{(\ln(x^2+1))^2}.}
Step 2:  
Now, we use the Chain Rule to get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{h'(x)} & = & \displaystyle{\frac{\ln(x^2+1)((5x^2+7x)^2)'-(5x^2+7x)^2(\ln(x^2+1))'}{(\ln(x^2+1))^2}}\\ &&\\ & = & \displaystyle{\frac{\ln(x^2+1)2(5x^2+7x)(5x^2+7x)'-(5x^2+7x)^2\frac{1}{x^2+1}(x^2+1)'}{(\ln(x^2+1))^2}}\\ &&\\ & = & \displaystyle{\frac{\ln(x^2+1)2(5x^2+7x)(10x+7)-(5x^2+7x)^2\frac{1}{x^2+1}(2x)}{(\ln(x^2+1))^2}.} \end{array}}


Final Answer:  
    (a)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3\tan^2(7x^2+5)\sec^2(7x^2+5)(14x)}
    (b)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos(\cos(e^x))(-\sin(e^x))(e^x)}
    (c)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\ln(x^2+1)2(5x^2+7x)(10x+7)-(5x^2+7x)^2\frac{1}{x^2+1}(2x)}{(\ln(x^2+1))^2}}

Return to Sample Exam