009B Sample Midterm 2, Problem 2

From Grad Wiki
Revision as of 10:17, 5 February 2017 by Kayla Murray (talk | contribs)
Jump to navigation Jump to search

Evaluate

a)
b)


Foundations:  
How would you integrate
You could use -substitution. Let Then,
Thus,

Solution:

(a)

Step 1:  
We multiply the product inside the integral to get
   .
Step 2:  
We integrate to get
   .
We now evaluate to get
   .

(b)

Step 1:  
We use -substitution. Let . Then, and . Also, we need to change the bounds of integration.
Plugging in our values into the equation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=x^4+2x^2+4} , we get and .
Therefore, the integral becomes  .
Step 2:  
We now have:
   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{1}{4}\int_4^{28}\sqrt{u}~du=\left.\frac{1}{6}u^{\frac{3}{2}}\right|_4^{28}=\frac{1}{6}(28^{\frac{3}{2}}-4^{\frac{3}{2}})=\frac{1}{6}((\sqrt{28})^3-(\sqrt{4})^3)=\frac{1}{6}((2\sqrt{7})^3-2^3)} .
So, we have
   .
Final Answer:  
(a)  
(b)  

Return to Sample Exam