009C Sample Final 1, Problem 4

From Grad Wiki
Revision as of 09:55, 8 February 2016 by Kayla Murray (talk | contribs)
Jump to navigation Jump to search

Find the interval of convergence of the following series.

Foundations:  
Ratio Test
Check endpoints of interval

Solution:

Step 1:  
We proceed using the ratio test to find the interval of convergence. So, we have
Step 2:  
So, we have . Hence, our interval is . But, we still need to check the endpoints of this interval
to see if they are included in the interval of convergence.
Step 3:  
First, we let . Then, our series becomes .
Since , we have . Thus, is decreasing.
Final Answer:  

Return to Sample Exam