Difference between revisions of "Section 1.7 Homework"
Jump to navigation
Jump to search
(Created page with "'''3.''' Find the matrix representation for <math> D^2 + 2D+1_{P_3}: P_3 \to P_3</math> with respect to the basis <math>1, t, t^2, t^3</math>.<br /> <br /> ''Solution'' In or...") |
|||
Line 3: | Line 3: | ||
<br /> | <br /> | ||
− | + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | |
− | In order to calculate the matrix representation, we evaluate the function on each of the basis elements and then write the coordinate vector for the output of the function in terms of the same basis. In particular if we let <math>L = D^2 + 2D + 1_{P_3}</math> then:<br /> | + | !Solution: |
+ | |- | ||
+ | |In order to calculate the matrix representation, we evaluate the function on each of the basis elements and then write the coordinate vector for the output of the function in terms of the same basis. In particular if we let <math>L = D^2 + 2D + 1_{P_3}</math> then:<br /> | ||
<math>L(1) = 0 + 2\cdot 0 + 1 = 1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}</math><br /> | <math>L(1) = 0 + 2\cdot 0 + 1 = 1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}</math><br /> | ||
<math>L(t) = 0 + 2\cdot 1 + t = 2+t = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}</math> <math>\leftarrow</math> Fixed error here<br /> | <math>L(t) = 0 + 2\cdot 1 + t = 2+t = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}</math> <math>\leftarrow</math> Fixed error here<br /> | ||
Line 10: | Line 12: | ||
<math>L(t^3) = 6t + 2\cdot 3t^2 + t^3 = 6t+6t^2+t^3 = \begin{bmatrix} 0 \\ 6 \\ 6 \\ 1 \end{bmatrix}</math><br /> | <math>L(t^3) = 6t + 2\cdot 3t^2 + t^3 = 6t+6t^2+t^3 = \begin{bmatrix} 0 \\ 6 \\ 6 \\ 1 \end{bmatrix}</math><br /> | ||
Which gives the matrix representation: <math>\begin{bmatrix} 1 & 2 & 2 & 0\\ 0 & 1 & 4 & 6 \\ 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 1 \end{bmatrix}</math> | Which gives the matrix representation: <math>\begin{bmatrix} 1 & 2 & 2 & 0\\ 0 & 1 & 4 & 6 \\ 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 1 \end{bmatrix}</math> | ||
+ | |} | ||
'''6.''' Let <math> | '''6.''' Let <math> | ||
Line 22: | Line 25: | ||
<math> E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}</math> | <math> E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}</math> | ||
− | + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | |
+ | !Solution: | ||
+ | |- | ||
+ | |As before we evaluate the function on the basis elements and represent the outputs as coordinate vectors.<br /> | ||
<math>R_A(E_{11}) = E_{11} A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} a & c \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} a \\ 0 \\ c \\ 0 \end{bmatrix}</math><br /> | <math>R_A(E_{11}) = E_{11} A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} a & c \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} a \\ 0 \\ c \\ 0 \end{bmatrix}</math><br /> | ||
<math>R_A(E_{21}) = E_{21} A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ a & c \end{bmatrix} = \begin{bmatrix} 0 \\ a \\ 0 \\ c \end{bmatrix}</math><br /> | <math>R_A(E_{21}) = E_{21} A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ a & c \end{bmatrix} = \begin{bmatrix} 0 \\ a \\ 0 \\ c \end{bmatrix}</math><br /> | ||
Line 29: | Line 35: | ||
This gives the matrix representation of <math>R_A</math> as <math>\begin{bmatrix} a & 0 & b & 0 \\ 0 & a & 0 & b \\ c & 0 & d & 0 \\ 0 & c & 0 & d\end{bmatrix}</math> <math>L(t^3) = 6t + 2\cdot 3t^2 + t^3 = 6t+6t^2+t^3 = \begin{bmatrix} 0 \\ 6 \\ 6 \\ 1 \end{bmatrix}</math><br /> | This gives the matrix representation of <math>R_A</math> as <math>\begin{bmatrix} a & 0 & b & 0 \\ 0 & a & 0 & b \\ c & 0 & d & 0 \\ 0 & c & 0 & d\end{bmatrix}</math> <math>L(t^3) = 6t + 2\cdot 3t^2 + t^3 = 6t+6t^2+t^3 = \begin{bmatrix} 0 \\ 6 \\ 6 \\ 1 \end{bmatrix}</math><br /> | ||
Which gives the matrix representation: <math>\begin{bmatrix} 1 & 2 & 2 & 0\\ 0 & 1 & 4 & 6 \\ 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 1 \end{bmatrix}</math> | Which gives the matrix representation: <math>\begin{bmatrix} 1 & 2 & 2 & 0\\ 0 & 1 & 4 & 6 \\ 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 1 \end{bmatrix}</math> | ||
+ | |} | ||
Line 35: | Line 42: | ||
<br /> | <br /> | ||
− | + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | |
− | We again calculate:<br /> | + | !Solution: |
+ | |- | ||
+ | |We again calculate:<br /> | ||
<math>L(E_{11}) = \begin{bmatrix} 1 & -1 \end{bmatrix} E_{11} = \begin{bmatrix} 1 & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}</math><br /> | <math>L(E_{11}) = \begin{bmatrix} 1 & -1 \end{bmatrix} E_{11} = \begin{bmatrix} 1 & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}</math><br /> | ||
<math>L(E_{12}) = \begin{bmatrix} 1 & -1 \end{bmatrix} E_{12} = \begin{bmatrix} 1 & -1 \end{bmatrix}\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}</math><br /> | <math>L(E_{12}) = \begin{bmatrix} 1 & -1 \end{bmatrix} E_{12} = \begin{bmatrix} 1 & -1 \end{bmatrix}\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}</math><br /> | ||
Line 42: | Line 51: | ||
<math>L(E_{22}) = \begin{bmatrix} 1 & -1 \end{bmatrix} E_{22} = \begin{bmatrix} 1 & -1 \end{bmatrix}\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}</math><br /> | <math>L(E_{22}) = \begin{bmatrix} 1 & -1 \end{bmatrix} E_{22} = \begin{bmatrix} 1 & -1 \end{bmatrix}\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}</math><br /> | ||
This gives the matrix representation: <math>\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}</math> | This gives the matrix representation: <math>\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}</math> | ||
+ | |] |
Latest revision as of 23:58, 15 November 2015
3. Find the matrix representation for with respect to the basis .
Solution: |
---|
In order to calculate the matrix representation, we evaluate the function on each of the basis elements and then write the coordinate vector for the output of the function in terms of the same basis. In particular if we let then:
|
6. Let and consider the map defined by . Compute the matrix representation of this linear map with respect to the basis:
Solution: |
---|
As before we evaluate the function on the basis elements and represent the outputs as coordinate vectors.
|
7. Compute a matrix representation for defined by:
using the standard bases.
Solution: | |
---|---|
We again calculate:
|
] |