Difference between revisions of "Intersections"

From Grad Wiki
Jump to navigation Jump to search
 
Line 1: Line 1:
 
== Definition ==
 
== Definition ==
[[File:Intersections.png|thumb|The Venn diagram displays two sets <math>X</math> and <math>Y</math> with the intersection <math>X\cap Y</math> shaded]]
+
[[File:Intersections.png|thumb|The Venn diagram displays two sets <math style="vertical-align: 0px">X</math> and <math style="vertical-align: 0px">Y</math> with the intersection <math style="vertical-align: -1px">X\cap Y</math> shaded]]
Let <math>X</math> and <math>Y</math> be subsets of some universal set <math>U</math>. The '''''intersection of <math>X</math> and <math>Y</math>''''', written <math>X\cap Y</math>, is the set of all <math>x</math> in <math>U</math> which are in both of the sets <math>X</math> and <math>Y</math>.<br />
+
Let <math style="vertical-align: 0px">X</math> and <math style="vertical-align: 0px">Y</math> be subsets of some universal set &thinsp;<math style="vertical-align: 0px">U</math>. The '''''intersection of <math style="vertical-align: 0px">X</math> and <math style="vertical-align: 0px">Y</math>''''', written <math style="vertical-align: -1px">X\cap Y</math>, is the set of all <math style="vertical-align: 0px">x</math> in &thinsp;<math style="vertical-align: 0px">U</math> which are in both of the sets <math style="vertical-align: 0px">X</math> and <math style="vertical-align: 0px">Y</math>.<br />
Symbolically, <math>X\cap Y=\lbrace x\in U : x\in X \text{ and } x\in Y\rbrace</math>.
+
Symbolically, <math style="vertical-align: -5px">X\cap Y=\lbrace x\in U : x\in X \text{ and } x\in Y\rbrace</math>.
  
 
== Examples ==
 
== Examples ==

Latest revision as of 12:47, 1 July 2015

Definition

The Venn diagram displays two sets and with the intersection shaded

Let and be subsets of some universal set  . The intersection of and , written , is the set of all in   which are in both of the sets and .
Symbolically, .

Examples

Example 1

Determine the intersection of the sets and .

Solution. By definition, we wish to find the set of all elements which are in both of the sets. The only such element is . Thus, our solution is .

Example 2

Prove that for any sets and , .

Proof. Let . That is, and . In particular, since we have that .