Difference between revisions of "Subsets"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
  
 
== Definition ==
 
== Definition ==
Let <math>X</math> and <math>Y</math>  be sets. We say that ''<math>X</math> is a subset of <math>Y</math>'' if every element of <math>X</math>  is also an element of <math>Y</math> , and we write <math>X\subseteq Y</math>  or <math>Y\supseteq X</math> . Symbolically, <math>X\subseteq Y</math>  means <math>x\in X</math>  <math>\Rightarrow</math> <math>x\in Y</math> .
+
Let <math>X</math> and <math>Y</math>  be sets. We say that '''''<math>X</math> is a subset of <math>Y</math>''''' if every element of <math>X</math>  is also an element of <math>Y</math> , and we write <math>X\subseteq Y</math>  or <math>Y\supseteq X</math> . Symbolically, <math>X\subseteq Y</math>  means <math>x\in X</math>  <math>\Rightarrow</math> <math>x\in Y</math> .
  
 
Two sets <math>X</math> and <math>Y</math> are said to be equal, <math>X=Y</math>, if both <math>X\subseteq Y</math> and <math>Y\subseteq X</math>. Note that some authors use the symbol <math>\subset</math> in place of the symbol <math>\subseteq</math>.
 
Two sets <math>X</math> and <math>Y</math> are said to be equal, <math>X=Y</math>, if both <math>X\subseteq Y</math> and <math>Y\subseteq X</math>. Note that some authors use the symbol <math>\subset</math> in place of the symbol <math>\subseteq</math>.

Revision as of 19:27, 27 June 2015

Definition

Let and be sets. We say that is a subset of if every element of is also an element of , and we write or . Symbolically, means .

Two sets and are said to be equal, , if both and . Note that some authors use the symbol in place of the symbol .