Difference between revisions of "005 Sample Final A, Question 5"

From Grad Wiki
Jump to navigation Jump to search
Line 14: Line 14:
 
   <tr>
 
   <tr>
 
     <td align = "center"><math> x:</math></td>
 
     <td align = "center"><math> x:</math></td>
     <td align = "center"><math> x<-1 </math></td>
+
     <td align = "center"><math> x<-2 </math></td>
 +
    <td align = "center"><math> x=-2 </math></td>
 +
    <td align = "center"><math> -2<x<-1 </math></td>
 
     <td align = "center"><math> x=-1 </math></td>
 
     <td align = "center"><math> x=-1 </math></td>
     <td align = "center"><math> -1<x<2 </math></td>
+
     <td align = "center"><math>-1<x</math></td>
    <td align = "center"><math> x=2 </math></td>
 
    <td align = "center"><math>x>2</math></td>
 
 
   </tr>
 
   </tr>
 
   <tr>
 
   <tr>
 
     <td align = "center"><math> Sign: </math></td>
 
     <td align = "center"><math> Sign: </math></td>
 
     <td align = "center"><math> (+) </math></td>
 
     <td align = "center"><math> (+) </math></td>
     <td align = "center"><math> 0 </math></td>
+
     <td align = "center"><math> VA </math></td>
 
     <td align = "center"><math> (-) </math></td>
 
     <td align = "center"><math> (-) </math></td>
 
     <td align = "center"><math> 0 </math></td>
 
     <td align = "center"><math> 0 </math></td>

Revision as of 20:28, 21 May 2015

Question Solve the following inequality. Your answer should be in interval notation. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3x+5}{x+2}\ge 2}


Step 1:
We start by subtracting 2 from each side to get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3x + 5}{x + 2} - \frac{2x + 4}{x + 2} = \frac{x + 1}{x + 2} \ge 0}
Step 2:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x:} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x<-2 } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=-2 } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2<x<-1 } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=-1 } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1<x}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Sign: } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (+) } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle VA } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-) } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (+)}


Final Answer:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\infty, -2)\cup[1, \infty)}