Difference between revisions of "005 Sample Final A, Question 13"

From Grad Wiki
Jump to navigation Jump to search
 
Line 1: Line 1:
 
''' Question '''  Give the exact value of the following if its defined, otherwise, write undefined. <br>
 
''' Question '''  Give the exact value of the following if its defined, otherwise, write undefined. <br>
 
<math>(a) \sin^{-1}(2) \qquad \qquad (b) \sin\left(\frac{-32\pi}{3}\right) \qquad \qquad (c)\sec\left(\frac{-17\pi}{6}\right)</math>
 
<math>(a) \sin^{-1}(2) \qquad \qquad (b) \sin\left(\frac{-32\pi}{3}\right) \qquad \qquad (c)\sec\left(\frac{-17\pi}{6}\right)</math>
 +
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Foundations:
 +
|-
 +
|1) What is the domain of <math>\sin^{-1}?</math>
 +
|-
 +
|2) What are the reference angles for <math>\frac{-32\pi}{3}</math> and <math>\frac{-17\pi}{6}</math>?
 +
|-
 +
|Answers:
 +
|-
 +
|1) The domain is <math>[-1, 1].</math>
 +
|-
 +
|2) The reference angle for <math>\frac{-32\pi}{3}</math> is <math>\frac{4\pi}{3}</math>, and the reference angle for <math>\frac{-17\pi}{6}</math> is <math>\frac{7\pi}{6}</math>
 +
|}
 +
  
  

Latest revision as of 19:58, 21 May 2015

Question Give the exact value of the following if its defined, otherwise, write undefined.


Foundations:
1) What is the domain of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin^{-1}?}
2) What are the reference angles for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-32\pi}{3}} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-17\pi}{6}} ?
Answers:
1) The domain is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [-1, 1].}
2) The reference angle for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-32\pi}{3}} is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4\pi}{3}} , and the reference angle for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-17\pi}{6}} is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{7\pi}{6}}


Step 1:
For (a), we want an angle Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta} such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin(\theta)=2} . Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1\leq \sin (\theta)\leq 1} , it is impossible
for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin(\theta)=2} . So, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin^{-1}(2)} is undefined.
Step 2:
For (b), we need to find the reference angle for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-32\pi}{3}} . If we add multiples of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\pi} to this angle, we get the
reference angle Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4\pi}{3}} . So, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin\left(\frac{-32\pi}{3}\right)=\sin\left(\frac{4\pi}{3}\right)=\frac{-\sqrt{3}}{2}} .
Step 3:
For (c), we need to find the reference angle for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-17\pi}{6}} . If we add multiples of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\pi} to this angle, we get the
reference angle Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{7\pi}{6}} . Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos\left(\frac{7\pi}{6}\right)=\frac{-\sqrt{3}}{2}} , we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sec\left(\frac{-17\pi}{6}\right)=\sec\left(\frac{7\pi}{6}\right)=\frac{2}{-\sqrt{3}}=\frac{-2\sqrt{3}}{3}} .
Final Answer:
a) undefined
b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-\sqrt{3}}{2}}
c)Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-2\sqrt{3}}{3}}